×

Ladder determinantal rings. (English) Zbl 0842.13007

Let \(K\) be a field, and let \(X = (X_{ij})\) be an \(m \times n\) matrix of indeterminates over \(K\). A ladder in \(X\) is a subset \(Y\) of \(X\) such that the following holds: if \(X_{ij}\), \(X_{kl}\) are in \(Y\) and \(i \leq k\), \(j \leq l\), then \(X_{il}\), \(X_{jk} \in Y\). \(K[Y]\) denotes the polynomial ring \(K[X_{ij} |X_{ij} \in Y]\) and \(I_t (Y)\) the ideal in \(K[Y]\) generated by the \(t\)-minors of \(X\) which solely involve indeterminates of \(Y\). The factor ring \(R_t (Y) = K[Y]/I_t (Y)\) is called a ladder determinantal ring. – The author shows that ladder determinantal rings are normal. In case \(Y\) is a one-sided ladder (which is defined in a nearby way), he computes the divisor class group and the canonical class, and proves a characterization of the Gorensteinness of \(R_t (Y)\) in terms of the shape of \(Y\).

MSC:

13C40 Linkage, complete intersections and determinantal ideals
Full Text: DOI

References:

[1] Abhyankar, S. S., Enumerative Combinatorics of Young tableaux (1988), Marcel Dekker: Marcel Dekker New York · Zbl 0643.05001
[2] Bruns, W.; Vetter, U., Determinantal rings, (Lecture Notes in Mathematics, Vol. 1327 (1988), Springer: Springer Heidelberg) · Zbl 0673.13006
[3] Caniglia, L.; Guccione, J. A.; Guccione, J. J., Ideals of generic minors, Commun. Algebra, 18, 2633-2640 (1990) · Zbl 0709.15007
[4] Fossum, R., The Divisor Class of Group of a Krull Domain (1973), Springer: Springer Berlin · Zbl 0256.13001
[5] Gräbe, H. G., Streckungsringe, (Dissertation B (1988), Pädagogische Hochschule Erfurt) · Zbl 0646.13010
[6] Hashimoto, M.; Hibi, T.; Noma, A., Divisor class groups of affine semigroup rings associated with a distributive lattice, J. Algebra, 149, 352-357 (1992) · Zbl 0759.13009
[7] Herzog, J.; Kunz, E., Der kanonische Modul eines Cohen-Macaulay Rings, (Lecture Notes in Mathematics, Vol. 238 (1971), Springer: Springer Berlin) · Zbl 0231.13009
[8] Herzog, J.; Trung, N. V., Gröbner bases and multiplicity of determinantal and pfaffian ideals, Adv., in Math., 96, 1-37 (1992) · Zbl 0778.13022
[9] Hibi, T., Distributive lattice, affine semigroup rings and algebras with straightening laws, Commutative algebra and combinatorics, (Advanced Studies in Pure Mathematics, Vol. 11 (1987), North-Holland: North-Holland Amsterdam), 93-109 · Zbl 0654.13015
[10] Hochster, M., Cohen-Macaulay rings, combinatorics, and simplicial complexes, (Macdonald; Magid; Smith, Ring theory, II (1977), Marvel Dekker: Marvel Dekker New York), 171-223 · Zbl 0351.13009
[11] Narasimhan, H., The irreducibility of ladder determinantal varieties, J. Algebra, 102, 162-185 (1986) · Zbl 0604.14045
[12] Robbiano, L., Introduction to the theory of Gröbner bases, Queen’s Paper in Pure and Appl. Math., Vol. V, No. 80 (1988), Kingston, Canada · Zbl 0692.13002
[13] Sturmfels, B., Gröbner bases and Stanley decompositions of determinantal rings, Math. Z., 205, 137-144 (1990) · Zbl 0685.13005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.