×

Analytic numerical solution of coupled semi-infinite diffusion problems. (English) Zbl 0839.35103

Summary: We consider coupled semi-infinite diffusion problems of the form \(u_t(x, t)- A^2 u_{xx}(x, t)= 0\), \(x> 0\), \(t> 0\), subject to \(u(0, t)= B\) and \(u(x, 0)= 0\), where \(A\) is a matrix \(\mathbb{C}^{r\times r}\), and \(u(x, t)\) and \(B\) are vectors in \(\mathbb{C}^r\). Using the Fourier sine transform, an explicit exact solution of the problem is proposed. Given an admissible error \(\varepsilon\) and a domain \(D(x_0, t_0)= \{(x, t); 0\leq x\leq x_0, t\geq t_0> 0\}\), an analytic approximation solution is constructed so that the error with respect to the exact solution is uniformly upper bounded by \(\varepsilon\) in \(D(x_0, t_0)\).

MSC:

35Q35 PDEs in connection with fluid mechanics
35A35 Theoretical approximation in context of PDEs
35C15 Integral representations of solutions to PDEs
Full Text: DOI

References:

[1] Sezgin, M., Magnetohydrodynamic flows in a rectangular duct, Int. J. Numer. Methods Fluids, 7, 697-718 (1987) · Zbl 0639.76112
[2] Cannon, J. R.; Klein, R. E., On the observability and stability of the temperature distribution in a composite heat conductor, SIAM J. Appl. Math., 24, 596-602 (1973) · Zbl 0236.35026
[3] Morimoto, H., Stability in the wave equation coupled with heat flow, Numerische Math., 4, 136-145 (1962) · Zbl 0235.65076
[4] King, A. I.; Chou, C. C., Mathematical modelling, simulation and experimental testing of biochemical systems crash response, J. Biomech., 9, 301-317 (1976)
[5] Golpasamy, K., An arms race with deteriorating armaments, Math. Biosci., 37, 191-203 (1977) · Zbl 0368.90101
[6] Ames, W. F., Numerical Methods for Partial Differential Equations (1977), Academic Press: Academic Press New York · Zbl 0219.35007
[7] Farlow, S. J., Partial Differential Equations for Scientists and Engineers (1982), John Wiley: John Wiley New York · Zbl 0502.90082
[8] Tyn-Myint-U; Debnath, L., Partial Differential Equations for Scientists and Engineers (1987), North-Holland: North-Holland New York · Zbl 0644.35001
[9] Chiu, H. H., Theory of irreductible linear systems, Quarterly Appl. Maths., XXVII, 87-104 (1969) · Zbl 0176.09001
[10] Jódar, L., Computing accurate solutions for coupled systems of second order partial differential equations II, Int. J. Computer Math., 46, 63-76 (1992) · Zbl 0813.65114
[11] Jódar, L.; Ponsoda, E., Continuous numerical solutions and error bounds for time dependent systems of partial differential equations: Mixed problems, Computers Math. Applic., 29, 8, 63-71 (1995) · Zbl 0831.65102
[12] Golub, G.; Van Loan, C. F., Matrix Computations (1989), John Hopkins Univ. Press: John Hopkins Univ. Press Baltimore, MA · Zbl 0733.65016
[13] Dunford, N.; Schwartz, J., Linear Operators, Part I (1957), Interscience: Interscience New York
[14] Kågtröm, B., Bounds and perturbation bounds for the matrix exponential, BIT, 17, 39-57 (1977) · Zbl 0356.65034
[15] Halmos, P. R., A Hilbert Space Problem Book (1967), Van Nostrand: Van Nostrand Princeton, NJ · Zbl 0144.38704
[16] Rickart, C. E., General Theory of Banach Algebras (1960), Van Nostrand: Van Nostrand Princeton, NJ · Zbl 0084.33502
[17] Rinehart, R. F., The derivative of a matrix function, (Proc. Amer. Math. Soc., 7 (1956)), 2-5 · Zbl 0070.30204
[18] Folland, G. B., Real Analysis (1984), John Wiley: John Wiley New York · Zbl 0431.34019
[19] Dieudonné, J., Foundations of Modern Analysis (1960), Academic Press: Academic Press New York · Zbl 0100.04201
[20] Apostol, T. M., Mathematical Analysis (1957), Addison-Wesley: Addison-Wesley Reading, MA · Zbl 0126.28202
[21] Moler, C. B.; Van Loan, C. F., Nineteen Dubois ways to compute the exponential of a matrix, SIAM Review, 20, 801-836 (1978) · Zbl 0395.65012
[22] Van Loan, C. F., Computing integrals involving the matrix exponential, IEEE Trans. Aut. Control, AC-23, 395-404 (1978) · Zbl 0387.65013
[23] Mikhailov, M. D.; Ozi§ik, M. N., Unified Analysis and Solutions of Heat and Mass Diffusion (1984), John Wiley: John Wiley New York · Zbl 0599.76103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.