×

The induced size-Ramsey number of cycles. (English) Zbl 0839.05073

Authors’ abstract: For a graph \(H\) and an integer \(r\geq 2\), the induced \(r\)-size-Ramsey number of \(H\) is defined to be the smallest integer \(m\) for which there exists a graph \(G\) with \(m\) edges with the following property: however one colours the edges of \(G\) with \(r\) colours, there always exists a monochromatic induced subgraph \(H'\) of \(G\) that is isomorphic to \(H\). This is a concept closely related to the classical \(r\)-size-Ramsey number of Erdös, Faudree, Rousseau and Schelp and to the \(r\)-induced Ramsey number, a natural notion that appears in problems and conjectures due to, among others, Graham and Rödl, and Trotter. Here, we prove a result that implies that the induced \(r\)-size-Ramsey number of the cycle \(C^\ell\) is at most \(c_r\ell\) for some constant \(c_r\) that depends only upon \(r\). Thus, we settle a conjecture of Graham and Rödl, which states that the above holds for the path \(P^\ell\) of order \(\ell\), and also generalize in part a result of Bollobás, Burr and Reimer that implies that the \(r\)-size-Ramsey number of the cycle \(C^\ell\) is linear in \(\ell\). Our method of proof is heavily based on techniques from the theory of random graphs and on a variant of the powerful regularity lemma of Szemerédi.

MSC:

05C55 Generalized Ramsey theory
05C38 Paths and cycles
05C80 Random graphs (graph-theoretic aspects)
05C85 Graph algorithms (graph-theoretic aspects)
Full Text: DOI

References:

[1] Szemerédi, Problèmes en Combinatoire et Théorie des Graphes, Proc. Colloque Inter. CNRS pp 399– (1978)
[2] Turán, Mat. Fiz. Lapok 48 pp 436– (1941)
[3] DOI: 10.1016/0095-8956(83)90037-0 · Zbl 0547.05044 · doi:10.1016/0095-8956(83)90037-0
[4] DOI: 10.1006/jctb.1993.1012 · Zbl 0725.05076 · doi:10.1006/jctb.1993.1012
[5] Bollobás, Random Graphs (1985)
[6] Beck, Studia Sci. Math. 18 pp 401– (1983)
[7] Beck, Mathematics of Ramsey Theory pp 34– (1990) · doi:10.1007/978-3-642-72905-8_4
[8] DOI: 10.1002/jgt.3190070115 · Zbl 0508.05047 · doi:10.1002/jgt.3190070115
[9] Alon, The Probabilistic Method (1992)
[10] McDiarmid, On the method of bounded differences. Surveys in Combinatorics 1989, London Mathematical Society Lecture Notes Series 141 pp 148– (1989) · Zbl 0712.05012
[11] DOI: 10.1016/0012-365X(93)90230-Q · Zbl 0779.05050 · doi:10.1016/0012-365X(93)90230-Q
[12] DOI: 10.1002/rsa.3240040106 · Zbl 0778.05060 · doi:10.1002/rsa.3240040106
[13] DOI: 10.2307/2282952 · Zbl 0127.10602 · doi:10.2307/2282952
[14] DOI: 10.1007/BF02808204 · Zbl 0822.05049 · doi:10.1007/BF02808204
[15] Graham, Numbers in Ramsey theory. Surveys in Combinatorics, London Mathematical Society Lecture Note Series 123 pp 111– (1987) · Zbl 0633.05049
[16] DOI: 10.1016/0012-365X(93)90521-T · Zbl 0778.05059 · doi:10.1016/0012-365X(93)90521-T
[17] Erd?s, Infinite and Finite Sets, Colloq. Math. Soc. J. Bolyai 10 pp 585– (1975)
[18] DOI: 10.1007/BF02018930 · Zbl 0331.05122 · doi:10.1007/BF02018930
[19] Deuber, Infinite and Finite Sets, Colloq. Math. Soc. J. Bolyai 10 pp 323– (1975)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.