×

Isometric embedding of the 2-sphere with non negative curvature in \(\mathbb{R}^ 3\). (English) Zbl 0833.53049

In 1916 H. Weyl asked whether \(S^2\) equipped with a Riemannian metric \(g\) of positive Gauss curvature \(K(g)\) can be isometrically embedded in \(\mathbb{R}^3\) equipped with the standard metric. Affirmative answers for metrics of various degrees of smoothness were provided by Lewy, Nirenberg, Heinz, Aleksandrov and Pogorelov. Recently J. A. Iaia [Duke Math. J. 67, No. 2, 423-459 (1992; Zbl 0777.53006)]proved the existence of a \(C^{1,1}\) embedding if \(K(g)\) is positive everywhere except at one point \(P\), and \(\Delta_g K\geq 0\) near \(P\). Here the authors extend this result to arbitrary \(C^4\) metrics of nonnegative curvature. The same result was also obtained recently by P. F. Guan and Y. Y. Li [J. Differ. Geom. 39, No. 2, 331-342 (1994; Zbl 0796.53056)]using a somewhat different method.
Reviewer: J.Urbas (Bonn)

MSC:

53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)
35J60 Nonlinear elliptic equations

References:

[1] Alexandroff, A.D.: Intrinsic geometry of convex surfaces, OGIZ Moscow, 1948
[2] Caffarelli, L., Nirenberg, L., Spruck, J.: The Dirichlet problem ... I. Monge-Ampère equations, Comm. Pure Appl. Math.37, 369–402 (1984) · Zbl 0598.35047 · doi:10.1002/cpa.3160370306
[3] Cheng, S.S., Yau, S.T.: On the regularity of the n-dimensionnal Minkowski problem, Comm. Pure Appl. Math.29, 495–516 (1976) · Zbl 0363.53030 · doi:10.1002/cpa.3160290504
[4] Corona, C.M.: Monge-Ampère equations on convex regions of the plane, Comm. Part. Diff. Equ.16(1), 43–57 (1991) · Zbl 0736.35041 · doi:10.1080/03605309108820751
[5] Darboux, G.: Théorie des surfaces, Vol. 3, Paris 1894 · JFM 25.1159.02
[6] Greene, R.E., Wu, H.:C convex functions and manifolds of positive curvature, Acta Math.137, 209–245 (1976) · Zbl 0372.53019 · doi:10.1007/BF02392418
[7] Heinz, E.: Neue a-priori-Abschätzungen ..., Math. Zeitsch.74, 129–157 (1960) · Zbl 0096.36601 · doi:10.1007/BF01180479
[8] Heinz, E.: On Weyl’s embedding problem, J. Math. Mech.,11, 421–454 (1962) · Zbl 0119.16604
[9] Hong, J.: Dirichlet problems for general Monge-Ampére equations, Math. Zeitsch.209, 289–308 (1992) · Zbl 0771.35020 · doi:10.1007/BF02570835
[10] Iaia, J.: Isometric embedding of surfaces with non negative curvature in \(\mathbb{R}\)3, Duke Math. Journ.67(2), 423–459 (1992) · Zbl 0777.53006 · doi:10.1215/S0012-7094-92-06717-2
[11] Nirenberg, L.: The Weyl and Minkowski problems in differential geometry in the large, Comm. Pure Appl. Math.6, 337–394 (1953) · Zbl 0051.12402 · doi:10.1002/cpa.3160060303
[12] Pogorelov, A.V.: Extrinsic geometry of convex surfaces, Transl. Math. Monogr., Vol35, Providence, RI: Am. Math. Soc. 1973 · Zbl 0311.53067
[13] Sacksteder, R.: The rigidity of hypersurfaces, J. Math. Mech.11, 929–939 (1962) · Zbl 0108.34702
[14] Schulze, F., Liang Yuan Liao: Regularity of solutions of two-dimensionnal Monge-Ampère equations, Trans. of A.M.S., Vol.307, no1, 271–277 (1988) · Zbl 0664.35023
[15] Weyl, H.: Über die Bestimmung einer geschlossen convex ..., Vierteljahrschrift Naturforsch. Gesell, (Zürich),61, 40–72 (1916)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.