×

On multiple coverings of irrational curves. (English) Zbl 0828.14015

Let \(f : X \to C\) be a branched covering of degree \(k\) of a smooth complex curve \(C\) of genus \(q \geq 1\); let \(g\) be the genus of \(X\). Here we study the linear series on \(X\).
First, if \(k = 2\) and \(g \geq 5q + 1\) we prove that for every \(d \geq g - q\) there is a base point free \(g^1_d\) not composed with the involution \(f\). – Then, for every \(C\) but with \(f\) general we prove that if \(d \geq kq - k + 3\) every irreducible component of \(W^1_d (X)\) containing a base point free \(g^1_d\) inducing with \(f\) a birational morphism \(X \to C \times \mathbb{P}^1\) is generically smooth of dimension \(\rho (d,g,1) : = 2d - 2 - g\); the proof uses the deformation theory of curves contained in \(C \times \mathbb{P}^1\); if \(2g \geq 2 k^2 - (2k - 3) (k - 1)\) we may avoid the birationality assumption by Castelnuovo-Severi inequality. If both \(C\) and \(f\) are general and \(kq \leq g \leq kq + (k - 1)\), then we prove that \(X\) satisfies the full theorem of Gieseker – Petri; the proof uses the theory of limit linear series.
Reviewer: E.Ballico (Povo)

MSC:

14H30 Coverings of curves, fundamental group
14C20 Divisors, linear systems, invertible sheaves
14D15 Formal methods and deformations in algebraic geometry
30F30 Differentials on Riemann surfaces
Full Text: DOI

References:

[1] E. Arbarello eM. Cornalba, Su una congettura di Petri. Comment. Math. Helv.56, 1-38 (1981). · Zbl 0505.14002 · doi:10.1007/BF02566195
[2] E. Arbarello andM. Cornalba, Footnotes to a paper of Beniamino Segre. Math. Ann.256, 341-362 (1981). · doi:10.1007/BF01679702
[3] E.Arbarello, M.Cornalba, P. A.Griffiths and J.Harris, Geometry of algebraic curves, Vol. I. Berlin-Heidelberg-New York 1985. · Zbl 0559.14017
[4] M. Coppens, C. Keem andG. Martens, The primitive length of a generalk-gonal curve. Indag. Math. (N.S.)5, 145-159 (1994). · Zbl 0845.14019 · doi:10.1016/0019-3577(94)90022-1
[5] D. Eisenbud andJ. Harris, A simpler proof of the Gieseker-Petri theorem on special divisors. Invent. Math.74, 269-280 (1983). · Zbl 0533.14012 · doi:10.1007/BF01394316
[6] D. Eisenbud andJ. Harris, The Kodaira dimension of the moduli space of curve of genus ?23. Invent. Math.90, 359-387 (1987). · Zbl 0631.14023 · doi:10.1007/BF01388710
[7] D. Eisenbud andJ. Harris, Existence, decomposition and limits of Weierstrass points. Invent. Math.87, 495-515 (1987). · Zbl 0606.14014 · doi:10.1007/BF01389240
[8] W. Fulton, J. Harris andR. Lazarsfeld, Excess linear series on an algebraic curve. Proc. Amer. Math. Soc.92, 320-322 (1984). · Zbl 0549.14004 · doi:10.1090/S0002-9939-1984-0759642-7
[9] E. Horikawa, On deformations of holomorphic maps I. J. Math. Soc. Japan25, 372-396 (1973). · Zbl 0254.32022 · doi:10.2969/jmsj/02530372
[10] E. Horikawa, On deformations of holomorphic maps II. J. Math. Soc. Japan26, 647-667 (1974). · Zbl 0286.32014 · doi:10.2969/jmsj/02640647
[11] R. Horiuchi, Gap orders of meromorphic functions on Riemann surfaces. J. Reine Angew. Math.336, 213-220 (1982). · Zbl 0484.14014 · doi:10.1515/crll.1982.336.213
[12] G. Welters, A theorem of Gieseker-Petri type for Prym varieties. Ann. Sci. École Norm. Sup. (4)18, 671-683 (1985). · Zbl 0628.14036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.