×

An injectivity property for étale cohomology. (English) Zbl 0828.14011

In this paper, we consider the following situation: Suppose \({\mathfrak O}\) is a commutative local ring, \(M \to \text{Spec} ({\mathfrak O})\) a smooth morphism, \(\omega \in \text{Spec} ({\mathfrak O})\) the closed point, \(U \subset \text{Spec} ({\mathfrak O})\) a quasi-compact open subscheme, \(\Phi\) a complex of étale sheaves on \(U\) whose cohomology sheaves are torsion and bounded below. Denote \(Q \Phi =\) the image of \(\Phi\) in the derived category of the category of abelian sheaves on \(U_{\text{ét}}\). \[ \begin{matrix} \overline M & @>i>> & M & @>j>> & \pi^{-1} (U) \quad & S = \text{Spec} ({\mathfrak O}) \\ \downarrow \pi_0 & & \downarrow \pi & & \downarrow \pi_U \quad & \omega = \text{Spec} (k) \\ \omega & @>i_0>> & S & @>j_0>> & U, \quad & \overline M = M \times_{\mathfrak O} \omega. \end{matrix} \] Let \(K = i^* Rj_*(Q (\pi^*_U \Phi)) \in D^+ (\overline M_{\text{ét}}, \mathbb{Z})\). If \(\xi @>>\varphi> M\) is a morphism where \(\xi\) is the spectrum of a field \(k (\xi)\) which is separable algebraic over \(k (\varphi (\xi))\), we can form \({\mathfrak O}^h_{M, \xi} =\) the unramified extension corresponding to \(k (\varphi (\xi)) \to k (\xi)\) of the henselization of \({\mathfrak O}_{M, \varphi (\xi)} = \Gamma (\xi, \varphi^*_{\text{ét}} {\mathfrak O}_{M_{\text{ét}}})\), and let \(M^h_\xi = \text{Spec} ({\mathfrak O}^h_{M, \xi})\).
Consider a point \(\xi \in \overline M\) and the generic point \(\eta \to \overline M^h_\xi\). Recall that \(\overline M^h_\xi\) is regular (and hence irreducible) as \({\mathfrak O}_{ \overline M, \xi}\) is. \({\mathfrak O}^h_{M, \eta}\) is the henselization of the local ring of \(M^h_\xi\) at \(\eta\), so we have a morphism \(M^h_\eta @>>\alpha> M^h_\xi\).
Theorem 1. For all \(q \in \mathbb{Z}\) the map \(H^q (M^h_\xi \times_{\mathfrak O} U\), pr\(^*_2 \Phi) @>>(\alpha \times\text{id})^*> H^q (M^h_\eta \times_{\mathfrak O} U, \text{pr}^*_2 \Phi)\) is injective.
Theorem 1 can be equivalently stated as:
Theorem 1’. The composed maps \(R^q \Gamma (\xi, K_{|\xi}) @< \sim<< R^q \Gamma (\overline M^h_\xi, K) \to R^q \Gamma (\eta, K_{|\eta})\), \(q \in \mathbb{Z}\), are injective.

MSC:

14F20 Étale and other Grothendieck topologies and (co)homologies

References:

[1] M. Artin , A. Grothendieck , and J.L. Verdier : Théorie des Topos et Cohomologie Étale des Schémas , Lecture Notes in Math. 269, 270, 305, Springer-Verlag (1972-73).
[2] M. Artin : Grothendieck Topologies . Harvard University (1962). · Zbl 0208.48701
[3] S. Bloch and K. Kato : p-adic Étale Cohomology , Publ. Math. IHES 63 (1986), 107-152. · Zbl 0613.14017 · doi:10.1007/BF02831624
[4] O. Gabber : Some Theorems on Azumaya Algebras . In: Lecture Notes in Math. 844, Springer Verlag (1981). · Zbl 0472.14013
[5] A. Grothendieck : Eléments de Géométrie Algébrique III (première partie) , Publ. Math. IHES 11 (1961); EGA IV , Publ. Math. IHES 20, 24, 28, 32 (1964- 67). |
[6] A. Grothendieck : Le Groupe de Brauer III . In: Dix Exposés sur la Cohomologie des Schémas . North Holland Pub. Co. (1968). · Zbl 0198.25901
[7] R. Hartshome : Residues and Duality , Lecture Notes in Math. 20, Springer-Verlag (1966). · Zbl 0212.26101 · doi:10.1007/BFb0080482
[8] R. Hoobler : A Cohomological Interpretation of Brauer Groups of Rings , Pacific Journal of Math. 86 (1980) 89-92. · Zbl 0459.13002 · doi:10.2140/pjm.1980.86.89
[9] K. Kato , Swan conductors for characters of degree one in the imperfect residue field case , Contemporary Math. Vol. 83 (1989), 101-131. · Zbl 0716.12006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.