×

Generalized quantifiers and pebble games on finite structures. (English) Zbl 0826.03017

\(L^k_{\infty \omega}\), \(k \geq 1\), is an infinitary logic that allows infinite cojunctions and disjunctions, but has only a total of \(k\) distinct variables. The authors study the family of infinitary logics \(L^k_{\infty \omega} (Q)\), where \(Q = \{Q_i : i \in I\}\) is a collection of simple unary generalized quantifiers on finite structures. This paper investigates the model-theoretic properties and the expressive powers of these infinitary logics on finite structures. For example, the authors show that by using appropriate pebble games one can tell whether or not two finite structures satisfy the same sentences of \(L^k_{\infty \omega} (Q)\) (a game-theoretic characterization of equivalence). Pebble games are applied to obtain a structural characterization of counting quantifiers. The main technical result is that there are natural polynomial-time properties on finite structures that are expressible by sentences of \(L^2_{\infty \omega} (C)\), where \(C\) denotes the counting quantifiers, which are not expressible by sentences of \(L^k_{\infty \omega} (Q)\), where \(Q\) is a finite sequence of arbitrary simple unary generalized quantifiers and \(k\) is a positive integer. The proof requires sophisticated combinatorial tools. The paper ends with a section on abstract finite model theory.

MSC:

03C75 Other infinitary logic
03C80 Logic with extra quantifiers and operators
03C13 Model theory of finite structures
03C95 Abstract model theory
Full Text: DOI

References:

[1] Abiteboul, S.; Vianu, V., Procedural and declarative database update languages, (Proc. 7th ACM Symp. on Principles of Database Systems (1988)), 240-250
[2] Abiteboul, S.; Vianu, V., Generic computation and its complexity, (Proc. 23rd ACM Symp. on Theory of Computing (1991)), 209-219
[3] Aczel, P., An introduction to inductive definitions, (Barwise, J., Handbook of Mathematical Logic (1977), North-Holland: North-Holland Amsterdam), 739-782
[4] Aho, A. V.; Ullman, J. D., Universality of data retrieval languages, (Proc. 6th ACM Symp. on Principles of Programming Languages (1979)), 110-117
[5] Ajtai, M.; Fagin, R., Reachability is harder for directed than for undirected finite graphs, J. Symbolic Logic, 55, 113-150 (1990) · Zbl 0708.03016
[6] Ajtai, M.; Gurevich, Y., Monotone versus positive, J. ACM, 34, 1004-1015 (1987) · Zbl 0637.94022
[7] Barwise, J., On Moschovakis closure ordinals, J. Symbolic Logic, 42, 292-296 (1977) · Zbl 0367.02021
[8] (Barwise, J.; Feferman, S., Model-Theoretic Logics (1985), Springer: Springer Berlin) · Zbl 0587.03001
[9] Cai, J.; Fürer, M.; Immerman, N., An optimal lower bound on the number of variables for graph identification, (Proc. 30th IEEE Symp. on Foundations of Computer Science (1989)), 612-617
[10] Caicedo, X., Back-and-forth systems for arbitrary quantifiers, (Chuaqui, R.; Arruda, A. I.; DaCosta, N. C.A., Mathematical Logic in Latin America (1980), North-Holland: North-Holland Amsterdam), 83-102 · Zbl 0434.03025
[11] Chandra, A.; Harel, D., Structure and complexity of relational queries, J. Comput. System Sci., 25, 99-128 (1982) · Zbl 0511.68073
[12] Cook, S. A., An observation of time-storage trade-off, J. Comput. System Sci., 9, 308-316 (1974) · Zbl 0306.68026
[13] Corredor, L. J., El reticulo de las logicas de primer orden con cuantificadores cardinales, Revista Colombiana de Mathemáticas, 20, 1-26 (1986)
[14] de Rougemont, M., Uniform definability on finite structures with successor, (Proc. 16th ACM Symp. on Theory of Computing (1984)), 409-417
[15] Fagin, R., Generalized first-order spectra and polynomial-time recognizable sets, (Karp, R. M., Complexity of Computation, SIAM-AMS Proc., Vol. 7 (1974)), 43-73 · Zbl 0303.68035
[16] Fagin, R., Monadic generalized spectra, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 21, 89-96 (1975) · Zbl 0317.02054
[17] Flum, J., Characterizing logics, (Barwise, J.; Feferman, S., Model-Theoretic Logics (1985), Springer: Springer Berlin), 77-122
[18] Gaifman, H., On local and nonlocal properties, (Stern, J., Logic Colloquium ’81 (1982), North-Holland: North-Holland Amsterdam), 105-135 · Zbl 0518.03008
[19] Grädel, E., On logical descriptions of some concepts in structural complexity classes, (Börger, E.; Buning, H. Kleine; Richter, M. M., CSL ’89: 3rd Workshop on Computer Science Logic. CSL ’89: 3rd Workshop on Computer Science Logic, Lecture Notes in Computer Science, Vol. 440 (1990), Springer: Springer Berlin), 163-175 · Zbl 0925.03186
[20] Graham, R. L.; Rothschild, B. L.; Spencer, J. H., Ramsey Theory (1980), Wiley: Wiley New York · Zbl 0455.05002
[21] Gurevich, Y., Toward logic tailored for computational complexity, (Ricther, M. M.; etal., Computation and Proof Theory. Computation and Proof Theory, Lecture Notes in Mathematics, Vol. 1104 (1984), Springer: Springer Berlin), 175-216 · Zbl 0622.03030
[22] Gurevich, Y., Logic and the challenge of computer science, (Börger, E., Current Trends in Theoretical Computer Science (1988), Computer Science Press: Computer Science Press Rockville), 1-57
[23] Gurevich, Y.; Shelah, S., Fixed-point extensions of first-order logic, Ann. Pure Appl. Logic, 32, 265-280 (1986) · Zbl 0621.03013
[24] Hájek, P., Generalized quantifiers and finite sets, (Prace Nauk. Inst. Mat. Politech. Wroclaw No. 14 Ser. Konfer (1977)), 91-104, No. 1 · Zbl 0386.03017
[25] Hella, L., Logical hierarchies in PTIME, (Proc. 7th IEEE Symp. on Logic in Computer Science (1992)) · Zbl 0864.68095
[26] Herre, H.; Krynicki, M.; Pinus, A.; Väänänen, J., The Härtig quantifier: a survey, J. Symbolic Logic, 56, 1153-1183 (1991) · Zbl 0737.03013
[27] Immerman, N., Upper and lower bounds for first-order expressibility, J. Comput. System Sci., 25, 76-98 (1982) · Zbl 0503.68032
[28] Immerman, N., Relational queries computable in polynomial time, Inform. Control, 68, 86-104 (1986) · Zbl 0612.68086
[29] Immerman, N.; Kozen, D., Definability with bounded number of bound variables, Inform. Comput., 83, 121-139 (1989) · Zbl 0711.03004
[30] Immerman, N.; Lander, E. S., Describing graphs: a first-order approach to graph canonization, (Selman, A., Complexity Theory Retrospective (1990), Springer: Springer Berlin), 59-81
[31] Keenan, E.; Moss, L., Generalized quantifiers and the expressive power of natural language, (van Benthem, J.; Meulen, ter, Generalized Quantifiers in Natural Language (1985), Foris: Foris Dordrecht), 73-124 · Zbl 0607.03007
[32] Keisler, H. J., Logic with the quantifier “there exist uncountably many”, Ann. Math. Logic, 1, 1-93 (1970) · Zbl 0206.27302
[33] Keisler, H. J., Model Theory for Infinitary Logic (1971), North-Holland: North-Holland Amsterdam · Zbl 0222.02064
[34] Kolaitis, Ph. G., On asymptotic probabilities of inductive queries and their decision problem, (Parikh, R., Logics of Programs ’85. Logics of Programs ’85, Lecture Notes in Computer Science, Vol. 193 (1985), Springer: Springer Berlin), 153-166 · Zbl 0608.68078
[35] Kolaitis, Ph. G.; Vardi, M. Y., 0-1 laws for infinitary logics, (Proc. 5th IEEE Symp. on Logic in Computer Science (1990)), 156-167
[36] Kolaitis, Ph. G.; Vardi, M. Y., IBM Research Report RJ8010 (March 1991), Full version appeared in
[37] Krawczyk, A.; Krynicki, M., Ehrenfeucht games for generalized quantifiers, (Srebrny, M.; Marek, W.; Zarach, A., Set Theory and Hierarchy Theory. Set Theory and Hierarchy Theory, Lecture Notes in Mathematics, Vol. 537 (1976), Springer: Springer Berlin), 145-152 · Zbl 0338.02008
[38] Leivant, D., Inductive definitions over finite structures, Inform. Control, 89, 95-108 (1990) · Zbl 0718.03034
[39] Lindström, P., First order predicate logic with generalized quantifiers, Theoria, 32, 186-195 (1966) · Zbl 1230.03072
[40] Lindström, P., On extensions of elementary logic, Theoria, 35, 1-11 (1969) · Zbl 0206.27202
[41] Luks, E. M., Isomorphism of graphs of bounded valence can be tested in polynomial time, J. Comput. System Sci., 25, 42-65 (1982) · Zbl 0493.68064
[42] Makowsky, J. A.; Mundici, D., Abstract Equivalence Relations, (Barwise, J.; Feferman, S., Model-Theoretic Logics (1985), Springer: Springer Berlin), 717-746
[43] Moschovakis, Y. N., Elementary Induction on Abstract Structures (1974), North-Holland: North-Holland Amsterdam · Zbl 0307.02003
[44] Mostowski, A., On a generalization of quantifiers, Fundam. Math., 44, 12-36 (1957) · Zbl 0078.24401
[45] Tarski, A., A model-theoretic result concerning infinitary logic, Notices Amer. Math. Soc., 8, 260 (1961)
[46] J. Väänänen, Unary quantifiers on finite models, to appear.; J. Väänänen, Unary quantifiers on finite models, to appear.
[47] van Benthem, J., Questions about quantifiers, J. Symbolic Logic, 49, 443-466 (1984) · Zbl 0573.03008
[48] Vardi, M. Y., The complexity of relational query languages, (Proc. 14th ACM Symp. on Theory of Computing (1982)), 137-146
[49] Weese, M., Generalized Ehrenfeucht games, Fundam. Math., 109, 103-112 (1980) · Zbl 0368.02017
[50] Westerståhl, D., Quantifiers in formal and natural languages, (Gabbay, D.; Guenthner, F., Handbook of Philosophical Logic, Vol. IV (1989), D. Reidel: D. Reidel Dordrecht), 1-131 · Zbl 0875.03079
[51] Westerståhl, D., Relativization of quantifiers in finite models, (van der Does, J.; van Eijck, J., Generalized Quantifier Theory and Applications (1991), Institute of Logic, Language and Information: Institute of Logic, Language and Information Amsterdam), 187-205
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.