×

Approximation to the covariance properties of process averaged over irregular spatial regions. (English) Zbl 0825.62111

Summary: When modelling continuous regional data, it is common to model the regional variables themselves. For example, in geographic modelling, it is usual to specify the inverse covariance matrix in a simple form. However, in many situations it may be plausible to model an underlying continuous-space process. In order to postulate reasonable models, the behaviour of the derived regional process needs to be known. For exact Gaussian maximum likelihood estimation the covariance structure of the derived process may be needed for a large number of parameter values of the underlying process, and so may be computationally infeasible. This paper considers approximate relationships between the original and derived covariance structures for irregular regions. The derived covariance structures are compared with some geographic models in common use, and alternative models are postulated.

MSC:

62-XX Statistics

Software:

spatial
Full Text: DOI

References:

[1] Abramowitz M., Handbook of mathematical functions (1964) · Zbl 0171.38503
[2] DOI: 10.2307/2987782 · doi:10.2307/2987782
[3] Brewer, A.C. 1984. ”A general model of field variation and its implications on the efficiency of crop experiments”. University of Reading. Unpublished Ph. D. Thesis
[4] DOI: 10.2307/2981720 · Zbl 0648.62110 · doi:10.2307/2981720
[5] Cliff A.D., Spatial autocorrelation (1973)
[6] Cliff A.D., Spatial processes (1981)
[7] Cox D.R., Statistics: an appraisal pp 55– (1984)
[8] Cressie N.A.C., Statistics for spatial data (1991) · Zbl 0799.62002
[9] DOI: 10.1093/biomet/64.1.59 · Zbl 0348.62035 · doi:10.1093/biomet/64.1.59
[10] Ghosh B., Bull. Calcutta Math. Soc 43 pp 17– (1951)
[11] Haining R.P., Spatial data analysis in the social and environmental sciences (1990)
[12] Journel A.G., Mining Geostatistics (1978)
[13] DOI: 10.1093/biomet/73.2.247 · Zbl 0607.62093 · doi:10.1093/biomet/73.2.247
[14] Matérn, B. Performance of various designs of field experiments when applied in random fields. Proceedings of 3rd Conference of the Advisory Group of Forest Statisticians. pp.119–128. Paris: Institut National de la Recherche Agronomique.
[15] Matérn B., Spatial variation (1986) · doi:10.1007/978-1-4615-7892-5
[16] Matheron G., Les Cahiers du Centre de Morphologie Mathématique de Fontainbleau 5 (1971)
[17] DOI: 10.2307/2531010 · Zbl 0527.62097 · doi:10.2307/2531010
[18] DOI: 10.1017/S0021859600026538 · doi:10.1017/S0021859600026538
[19] DOI: 10.1017/S0014479700000752 · doi:10.1017/S0014479700000752
[20] DOI: 10.1002/0471725218 · doi:10.1002/0471725218
[21] Ripley B.D., Statistical inference for spatial processes (1988) · Zbl 0716.62100
[22] Upton G.J.G., Point pattern and quantitative data 1 (1985)
[23] DOI: 10.1111/j.1365-2389.1984.tb00267.x · doi:10.1111/j.1365-2389.1984.tb00267.x
[24] Williams R.M., Biometrika 39 pp 151– (1952) · Zbl 0046.36003 · doi:10.1093/biomet/39.1-2.151
[25] DOI: 10.1007/BF00890300 · doi:10.1007/BF00890300
[26] DOI: 10.2307/2532508 · doi:10.2307/2532508
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.