×

Generalized intelligent states and squeezing. (English) Zbl 0824.47056

Summary: The Robertson-Schrödinger uncertainty relation for two observables \(A\) and \(B\) is shown to be minimized in the eigenstates of the operator \(\lambda A+ iB\), \(\lambda\) being a complex number. Such states, called generalized intelligent states (GIS), can exhibit arbitrarily strong squeezing of \(A\) or \(B\). The time evolution of GIS is stable for Hamiltonians which admit invariants linear in \(A\) and \(B\). Systems of GIS for the SU(1,1) and SU(2) groups are constructed and discussed. It is shown that SU(1,1) GIS contain all the Perelomov coherent states (CS) and the Barut and Girardello CS while the spin CS are a subset of SU(2) GIS. CS for an arbitrary semisimple Lie group can be considered as a GIS for the quadratures of the Weyl generators.

MSC:

47N50 Applications of operator theory in the physical sciences
81V10 Electromagnetic interaction; quantum electrodynamics
81R30 Coherent states
22E70 Applications of Lie groups to the sciences; explicit representations
Full Text: DOI

References:

[1] DOI: 10.1080/09500348714550721 · Zbl 0941.81613 · doi:10.1080/09500348714550721
[2] DOI: 10.1103/RevModPhys.62.867 · doi:10.1103/RevModPhys.62.867
[3] DOI: 10.1103/PhysRevA.44.3369 · doi:10.1103/PhysRevA.44.3369
[4] DOI: 10.1103/PhysRevA.44.3369 · doi:10.1103/PhysRevA.44.3369
[5] DOI: 10.1016/0375-9601(93)90756-P · doi:10.1016/0375-9601(93)90756-P
[6] DOI: 10.1080/09500349014550941 · Zbl 0942.81629 · doi:10.1080/09500349014550941
[7] DOI: 10.1364/JOSAB.4.001728 · doi:10.1364/JOSAB.4.001728
[8] DOI: 10.1364/JOSAB.4.001728 · doi:10.1364/JOSAB.4.001728
[9] DOI: 10.1080/09500349014550371 · Zbl 0941.81550 · doi:10.1080/09500349014550371
[10] DOI: 10.1103/PhysRevA.43.404 · doi:10.1103/PhysRevA.43.404
[11] DOI: 10.1103/PhysRevA.47.733 · doi:10.1103/PhysRevA.47.733
[12] DOI: 10.1016/0375-9601(91)90256-8 · doi:10.1016/0375-9601(91)90256-8
[13] DOI: 10.1080/09500349014550041 · doi:10.1080/09500349014550041
[14] DOI: 10.1088/0305-4470/23/23/004 · doi:10.1088/0305-4470/23/23/004
[15] DOI: 10.1103/PhysRevA.47.5138 · doi:10.1103/PhysRevA.47.5138
[16] DOI: 10.1016/0375-9601(93)90267-4 · doi:10.1016/0375-9601(93)90267-4
[17] DOI: 10.1103/PhysRevA.47.R23 · doi:10.1103/PhysRevA.47.R23
[18] DOI: 10.1063/1.522835 · doi:10.1063/1.522835
[19] DOI: 10.1080/09500348714550851 · Zbl 0941.81612 · doi:10.1080/09500348714550851
[20] DOI: 10.1080/09500348714550851 · Zbl 0941.81612 · doi:10.1080/09500348714550851
[21] DOI: 10.1007/BF01645091 · Zbl 0243.22016 · doi:10.1007/BF01645091
[22] DOI: 10.1007/BF01646483 · Zbl 0214.38203 · doi:10.1007/BF01646483
[23] DOI: 10.1088/0305-4470/4/3/009 · doi:10.1088/0305-4470/4/3/009
[24] Robertson H., Phys. Rev. 35 pp 667– (1930)
[25] DOI: 10.1016/0375-9601(80)90231-5 · doi:10.1016/0375-9601(80)90231-5
[26] DOI: 10.1016/0375-9601(80)90231-5 · doi:10.1016/0375-9601(80)90231-5
[27] DOI: 10.1063/1.530391 · Zbl 0768.22010 · doi:10.1063/1.530391
[28] DOI: 10.1103/PhysRevA.4.2308 · doi:10.1103/PhysRevA.4.2308
[29] DOI: 10.1103/PhysRevA.4.2308 · doi:10.1103/PhysRevA.4.2308
[30] DOI: 10.1103/PhysRevA.13.2226 · doi:10.1103/PhysRevA.13.2226
[31] DOI: 10.1063/1.1666360 · doi:10.1063/1.1666360
[32] DOI: 10.1063/1.1666360 · doi:10.1063/1.1666360
[33] DOI: 10.1063/1.1666360 · doi:10.1063/1.1666360
[34] DOI: 10.1016/0375-9601(74)90525-8 · doi:10.1016/0375-9601(74)90525-8
[35] DOI: 10.1016/0375-9601(74)90525-8 · doi:10.1016/0375-9601(74)90525-8
[36] DOI: 10.1007/BF01646493 · Zbl 1125.82305 · doi:10.1007/BF01646493
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.