×

Eigenvalue estimates for Dirac operators coupled to instantons. (English) Zbl 0823.34072

The author considers the Dirac operator on a four-dimensional Riemannian spin manifold of positive curvature with values in a vector bundle. A sharp lower bound for the first positive eigenvalue is obtained, and an analysis is given for the question when this lower bound is equal to the eigenvalue [Th. Friedrich, Math. Nachr. 102, 53-56 (1981; Zbl 0481.53039)].
Reviewer: T.Aktosun (Fargo)

MSC:

34L40 Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.)
35P15 Estimates of eigenvalues in context of PDEs
58J50 Spectral problems; spectral geometry; scattering theory on manifolds
58J60 Relations of PDEs with special manifold structures (Riemannian, Finsler, etc.)
53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)

Citations:

Zbl 0481.53039
Full Text: DOI

References:

[1] Atiyah, M.F.;Hitchin, N.J.;Singer, I.M.: Selfduality in four-dimensional Riemannian Geometry.Proc. R. Soc. London A 362 (1978), 425–461. · Zbl 0389.53011 · doi:10.1098/rspa.1978.0143
[2] Baum, H.;Friedrich, Th.;Grunewald, R.;Kath, I.:Twistors and Killing Spinors on Riemannian Manifolds. Teubner-Texte Math. Bd. 124, Stuttgart/Leipzig 1991. · Zbl 0734.53003
[3] Bröcker, T.;Dieck, T.t.:Representation Theory of Compact Lie Groups. Springer Verlag, N.Y. 1985. · Zbl 0581.22009
[4] Friedrich, Th.: A remark on the first eigenvalue of the Dirac operator on 4-dimensional manifolds.Math. Nachr. 102 (1981), 53–56. · Zbl 0481.53039 · doi:10.1002/mana.19811020106
[5] Friedrich, Th.: Self-duality of Riemannian Manifolds and Connections. In:Self-dual Riemannian Geometry and Instantons. Teubner-Texte Math. Bd. 34, Leipzig 1981, 56–104.
[6] Henze, R.:Einige Untersuchungen der Eigenwerte des zu einem Zusammenhang assoziierten Dirac-Operators. Diplomarbeit, Humboldt-Universität 1984.
[7] Kobayashi, S.;Nomizu, K.:Foundation of Differential Geometry. Vol II. Interscience Publ., 1969. · Zbl 0175.48504
[8] Lawson, H.B.;Michelsohn, M.-L.:Spin Geometry. Princeton Univ. Press, 1989. · Zbl 0688.57001
[9] Wallach, N.R.:Harmonic Analysis on Homogeneous Spaces. M. Decker Inc., N.Y. 1973. · Zbl 0265.22022
[10] Želobenko, D.P.:Compact Lie groups and their representations. Providence, RI: Amer. Math. Soc. 1973.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.