×

Discrete differential calculus: Graphs, topologies, and gauge theory. (English) Zbl 0822.58004

Summary: Differential calculus on discrete sets is developed in the spirit of noncommutative geometry. Any differential algebra on a discrete set can be regarded as a “reduction” of the “universal differential algebra” and this allows a systematic exploration of differential algebras on a given set. Associated with a differential algebra is a (di)graph where two vertices are connected by at most two (antiparallel) arrows. The interpretation of such a graph as a “Hasse diagram” determining a (locally finite) topology then establishes contact with recent work by other authors in which discretizations of topological spaces and corresponding field theories were considered with retain their global topological structure. It is shown that field theories, and in particular gauge theories, can be formulated on a discrete set in close analogy with the continuum case. The framework presented generalizes ordinary lattice theory which is recovered from an oriented (hypercubic) lattice graph. It also includes, e.g., the two-point space used by Connes and Lott (and others) in models of elementary particle physics. The formalism suggests that the latter be regarded as an approximation of a manifold and thus opens a way to relate models with an “internal” discrete space (à la Connes et al.) to models of dimensionally reduced gauge fields. Furthermore, a “symmetric lattice” is also studied which (in a certain continuum limit) turns out to be related to a “noncommutative differential calculus” on manifolds.

MSC:

46L85 Noncommutative topology
46L87 Noncommutative differential geometry
81T13 Yang-Mills and other gauge theories in quantum field theory

References:

[1] Connes A., Publ. I.H.E.S. 62 pp 257– (1985)
[2] DOI: 10.1016/0393-0440(89)90013-2 · Zbl 0695.16020 · doi:10.1016/0393-0440(89)90013-2
[3] DOI: 10.1088/0305-4470/26/12/031 · Zbl 0808.17009 · doi:10.1088/0305-4470/26/12/031
[4] DOI: 10.1016/0920-5632(91)90120-4 · doi:10.1016/0920-5632(91)90120-4
[5] DOI: 10.1016/0370-2693(92)91561-M · doi:10.1016/0370-2693(92)91561-M
[6] DOI: 10.1088/0305-4470/26/8/019 · Zbl 0789.58010 · doi:10.1088/0305-4470/26/8/019
[7] DOI: 10.1088/0305-4470/26/8/019 · Zbl 0789.58010 · doi:10.1088/0305-4470/26/8/019
[8] DOI: 10.1088/0305-4470/27/9/028 · Zbl 0843.58004 · doi:10.1088/0305-4470/27/9/028
[9] DOI: 10.1007/BF00979502 · Zbl 0797.53068 · doi:10.1007/BF00979502
[10] DOI: 10.1007/BF00979502 · Zbl 0797.53068 · doi:10.1007/BF00979502
[11] DOI: 10.1007/BF00979502 · Zbl 0797.53068 · doi:10.1007/BF00979502
[12] DOI: 10.1007/BF00979502 · Zbl 0797.53068 · doi:10.1007/BF00979502
[13] DOI: 10.1007/BF00979502 · Zbl 0797.53068 · doi:10.1007/BF00979502
[14] DOI: 10.1007/BF00979502 · Zbl 0797.53068 · doi:10.1007/BF00979502
[15] DOI: 10.1007/BF00979502 · Zbl 0797.53068 · doi:10.1007/BF00979502
[16] DOI: 10.1007/BF00979502 · Zbl 0797.53068 · doi:10.1007/BF00979502
[17] DOI: 10.1007/BF00979502 · Zbl 0797.53068 · doi:10.1007/BF00979502
[18] DOI: 10.1007/BF00979502 · Zbl 0797.53068 · doi:10.1007/BF00979502
[19] DOI: 10.1007/BF00979502 · Zbl 0797.53068 · doi:10.1007/BF00979502
[20] DOI: 10.1007/BF00979502 · Zbl 0797.53068 · doi:10.1007/BF00979502
[21] DOI: 10.1007/BF00673986 · Zbl 0733.54001 · doi:10.1007/BF00673986
[22] DOI: 10.1007/BF00670515 · Zbl 0806.54027 · doi:10.1007/BF00670515
[23] DOI: 10.1016/0370-1573(92)90101-5 · doi:10.1016/0370-1573(92)90101-5
[24] DOI: 10.1016/0550-3213(79)90192-5 · doi:10.1016/0550-3213(79)90192-5
[25] Ritz W., Phys. Z. 9 pp 521– (1908)
[26] DOI: 10.1007/BF01328531 · doi:10.1007/BF01328531
[27] DOI: 10.1103/PhysRevD.21.2291 · doi:10.1103/PhysRevD.21.2291
[28] DOI: 10.1103/PhysRevD.21.2291 · doi:10.1103/PhysRevD.21.2291
[29] Dimakis A., Int. J. Mod. Phys. A (Proc. Suppl.) 3 pp 474– (1993)
[30] DOI: 10.1007/BF00750305 · Zbl 0782.58013 · doi:10.1007/BF00750305
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.