×

Minimal representation-infinite Artin algebras. (English) Zbl 0822.16010

For finite-dimensional algebras over an algebraically closed field, the second Brauer-Thrall conjecture was proved by several authors (first by Nazarova and Rojter, then by Bretscher and Todorov, Bautista, and Fischbacher, etc.). But for Artin algebras over a commutative ring, this conjecture is still open. One of the main results of the paper is to prove the second Brauer-Thrall conjecture for an Artin algebra \(A\) such that \(\text{rad}^ \infty(M,M)=0\) for all indecomposable modules \(M\) in \(\text{mod }A\), the category of all finitely generated \(A\)-modules. Such an algebra is called a loop-finite algebra. The author shows also that the class of minimal representation infinite loop-finite Artin algebras is just the class of tame concealed Artin algebras. Several equivalent conditions of representation-infinite algebras are also presented. As a consequence of these results the author proves that if an Artin algebra \(A\) is such that the endomorphism ring of any indecomposable module in \(\text{mod }A\) is a division ring, then \(A\) is representation-finite.

MSC:

16G10 Representations of associative Artinian rings
16G60 Representation type (finite, tame, wild, etc.) of associative algebras
16D90 Module categories in associative algebras
Full Text: DOI

References:

[1] DOI: 10.1007/BF01214506 · Zbl 0415.16023 · doi:10.1007/BF01214506
[2] DOI: 10.1007/BFb0089780 · doi:10.1007/BFb0089780
[3] Nazarova, Mitt. Math. Sem. Giessen 115 (1975)
[4] DOI: 10.1016/0021-8693(75)90125-8 · Zbl 0332.16014 · doi:10.1016/0021-8693(75)90125-8
[5] Crawley-Boevey, Representations of Algebras and Related Topics 168 pp 127– (1992) · Zbl 0824.16010 · doi:10.1017/CBO9780511661853.005
[6] DOI: 10.1112/plms/s3-63.2.241 · Zbl 0741.16005 · doi:10.1112/plms/s3-63.2.241
[7] DOI: 10.1112/plms/s3-62.3.490 · Zbl 0768.16003 · doi:10.1112/plms/s3-62.3.490
[8] DOI: 10.1112/plms/s3-56.3.451 · Zbl 0661.16026 · doi:10.1112/plms/s3-56.3.451
[9] DOI: 10.1007/BFb0075257 · doi:10.1007/BFb0075257
[10] DOI: 10.1007/BF02567422 · Zbl 0584.16017 · doi:10.1007/BF02567422
[11] Auslander, Comm. Algebra 1 pp 269– (1974)
[12] Zhang, Canad. J. Math 43 pp 652– (1991) · Zbl 0736.16007 · doi:10.4153/CJM-1991-038-1
[13] DOI: 10.1016/0021-8693(91)90126-S · Zbl 0746.16009 · doi:10.1016/0021-8693(91)90126-S
[14] Skowro?ski, Proc. CMS Annual Seminar/NATO Advanced Research Workshop (1992)
[15] DOI: 10.1112/jlms/s2-47.3.405 · Zbl 0818.16015 · doi:10.1112/jlms/s2-47.3.405
[16] DOI: 10.1112/jlms/s2-45.1.32 · Zbl 0703.16010 · doi:10.1112/jlms/s2-45.1.32
[17] DOI: 10.1016/0021-8693(84)90239-4 · Zbl 0538.16026 · doi:10.1016/0021-8693(84)90239-4
[18] Harada, Osaka J. Math 7 pp 323– (1970)
[19] DOI: 10.1007/BF01215152 · Zbl 0648.16026 · doi:10.1007/BF01215152
[20] DOI: 10.1007/BFb0088469 · doi:10.1007/BFb0088469
[21] Fischbacher, C.R. Acad. Sc 9 pp 259– (1985)
[22] Dlab, Representation Theory of Algebras 37 pp 329– (1978)
[23] Dlab, Memoirs Amer. Math. Soc 173 (1976)
[24] Skowro?ski, Osaka J. Math 30 pp 515– (1993)
[25] Roiter, Izv. Acad. Nauk SSR 32 pp 1275– (1968)
[26] Ringel, Topics in Algebra 26 pp 407– (1990)
[27] Ringel, Tame algebras and integral quadratic forms 1099 (1984) · Zbl 0546.16013 · doi:10.1007/BFb0072870
[28] DOI: 10.1016/0021-8693(76)90184-8 · Zbl 0338.16011 · doi:10.1016/0021-8693(76)90184-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.