×

A Gaussian central limit theorem for trimmed products on simply connected step 2-nilpotent Lie groups. (English) Zbl 0820.60003

The aim of this paper is to prove for simply connected step-two-nilpotent groups \(G\) (hence non-Abelian groups) an analogon to a CLT of J. Kuelbs and M. Ledoux [Probab. Theory Relat. Fields 74, 341-355 (1986; Zbl 0586.60017)] for trimmed sums on \(G\), and let \(\nu\) belong to the domain of attraction of \((\mu_ t)\). More precisely, let \((\tau_ t = t^ A)\) be a continuous one-parameter group of automorphisms such that \(\tau_ t \mu_ 1 = \mu_ t\), \(t> 0\), and let for some sequence \((t_ n > 0, x_ n \in G)\), \(\tau_{t_ n}(\nu * \varepsilon_{x_ n})^ n \to \mu_ 1 = \mu\). \((\tau_ t)\) defines a polar decomposition of \(G\), hence random variables \(X\) are representable as \(X = T^ A Y\), where \(\tau > 0\) and \(Y\) takes its values in a suitable cross-section. Let \(X_ n\) be i.i.d. r.v. with distribution \(\nu\), let \(T_ n\) be the radial part of the polar decomposition. Let \(r_ n \to \infty\), \(r_ n/n \to 0\). Then, choosing a trimming procedure for the radial parts \(T_ n\) (similar to the procedure in the above mentioned paper of Kuelbs and Ledoux), the author proves that the trimmed product, normalized by \(r_ n^{-1/2}\), converges weakly to a centered Gauss measure. The proof is based on the usual tools for limit theorems on exponential Lie groups which allow to reduce proofs of convergence of probabilities on the group to the corresponding assertions for the tangent space. But, Lemma 2.3 depends essentially on the step-2-property of the underlying group. Thus the proof only works on Heisenberg-like groups. There is no comparable result for more general classes of groups.
Reviewer: W.Hazod (Dortmund)

MSC:

60B15 Probability measures on groups or semigroups, Fourier transforms, factorization
60F05 Central limit and other weak theorems
Full Text: DOI

References:

[1] Araujo, A., and Giné, E. (1980).The Central Limit Theorem for Real and Banach Valued Random Variables, Wiley, New York. · Zbl 0457.60001
[2] Feller, W. (1968).An Introduction to Probability Theory and Its Applications, Vol. I, 3rd ed., Wiley, New York. · Zbl 0155.23101
[3] Hazod, W. (1977).Stetige Faltungshalbgruppen von Wahrscheinlichkeitsmassen und Erzeugende Distributionen, Lecture Notes in Mathematics, Vol. 595, Springer-Verlag, Berlin. · Zbl 0373.60010
[4] Hazod, W. (1982). Stable probabilities on locally compact groups. In Heyer, H. (ed.),Probability Measures on Groups, Springer-Verlag, Berlin,Lecture Notes in Mathematics 928, 183–211. · Zbl 0492.60010
[5] Hazod, W. (1984). Remarks on [semi-]stable probabilities. In Heyer, H. (ed.),Probability Measures on Groups VII, Springer-Verlag, Berlin,Lecture Notes in Mathematics 1064, 182–203. · Zbl 0541.60007
[6] Hazod, W. (1984). Stable and semistable probabilities on groups and on vector spaces. In Szynal, D., and Weron, A. (eds.),Probability Theory on Vector Spaces III, Springer-Verlag, Berlin,Lecture Notes in Mathematics 1080, 69–89. · Zbl 0543.60014
[7] Hazod, W. (1986). Stable probability measures on groups and on vector spaces. A survey. In Heyer, H. (ed.),Probability Measures on Groups VIII, Springer-Verlag, Berlin,Lecture Notes in Mathematics 1210, 304–352. · Zbl 0607.60007
[8] Hazod, W., and Scheffler, H. P. (1993). The domains of partial attraction of probabilities on groups and on vector spaces.J. Theoret. Prob. 6(1), 175–186. · Zbl 0789.60007 · doi:10.1007/BF01046774
[9] Hazod, W., and Siebert, E. (1986). Continuous automorphism groups on a locally compact group contracting modulo a compact subgroup and applications to stable convolution semigroups.Semigroup Forum 33, 111–143. · Zbl 0582.22005 · doi:10.1007/BF02573186
[10] Heyer, H. (1977).Probability Measures on Locally Compact Groups, Springer-Verlag, Berlin. · Zbl 0376.60002
[11] Jurek, Z. J. (1984). Polar coordinates in Banach spaces.Bull. Polish Acad. Sci. Math. 32(1–2), 61–66. · Zbl 0573.47036
[12] Kaplan, A. (1980). Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms.Trans. Amer. Math. Soc. 258(1), 147–153. · Zbl 0393.35015 · doi:10.1090/S0002-9947-1980-0554324-X
[13] Khokhlov, Y. S. (1991). The domain of normal attraction of a stable probability measure on a nilpotent group. In Heyer, H. (ed.),Probability Measures on Groups X, Plenum Press, New York, pp. 239–247. · Zbl 0821.60009
[14] Kuelbs, J., and Ledoux, M. (1986). Extreme values and a Gaussian Central Limit Theorem.Prob. Th. Rel. Fields 74, 341–355. · Zbl 0586.60017 · doi:10.1007/BF00699095
[15] Neuenschwander, D. (1992). Limits of commutative triangular systems on simply connected step 2-nilpotent Lie groups.J. Theoret. Prob. 5(1), 217–222. · Zbl 0742.60011 · doi:10.1007/BF01046787
[16] Nobel, S. (1991). Limit theorems for probability measures on simply connected nilpotent Lie groups.J. Theoret. Prob. 4(2), 261–284. · Zbl 0722.60011 · doi:10.1007/BF01258737
[17] Pap, G. (1994). Uniqueness of embedding into a Gaussian semigroup on a nilpotent Lie group.Arch. Math. (Basel) 62, 282–288. · Zbl 0804.60007
[18] Rvačeva, E. L. (1962). On domains of attraction of multi-dimensional distributions.Sel. Transl. Math. Stat. Prob. 2, 183–205.
[19] Siebert, E. (1973). Ueber die Erzeugung von Faltungshalbgruppen auf beliebigen lokalkompakten Gruppen.Math. Z. 131, 313–333. · doi:10.1007/BF01174906
[20] Siebert, E. (1981). Fourier analysis and limit theorems for convolution semigroups on a locally compact group.Adv. Math. 39, 111–154. · Zbl 0469.60014 · doi:10.1016/0001-8708(81)90026-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.