×

Canonical positions for the factors in paperfolding sequences. (English) Zbl 0820.11011

A paper-folding sequence, \(u(n)\), is obtained by repeatedly folding a piece of paper in half according to a sequence of folding instructions (left half over right or right over left). If the paper is unfolded, the terms of the sequence can be seen to be \(u(n) =0\) or 1 according as the fold goes down or up. Recursively, \(u(4n +1)=0\) (respectively 1), \(u(4n+ 3)=1\) (respectively 0) and \(u(2n)\) is again a paper-folding sequence. A factor of length \(k\) is a word \(u(n) u(n+1) \dots u(n+k -1)\). The complexity \(P_ u (k)\) is the number of factors of length \(k\) in the sequence \(u\). J.-P. Allouche [Bull. Aust. Math. Soc. 46, No. 1, 23- 32 (1992; Zbl 0753.11011)] proved that \(P_ u(k)= 4k\) for \(k\geq 7\). In this paper, a uniformising set \({\mathcal P}_ k\) of integers of cardinality \(4k\) is constructed with the property that the factors of length \(k\) of any paper-folding sequence are just the factors beginning at the places indexed by the integers of \({\mathcal P}_ k\).
A minimal sequence is one such that for every integer \(n\geq 1\) there is an integer \(r\) with the property that every factor of length \(r\) contains all the factors of length \(n\). The smallest such \(r\), denoted \(R_ u (n)\), is called the recurrence function of the sequence \(u\). The paper- folding sequences are minimal and their recurrence function satisfies \(r_ u (k)< 44k\). All this and some more properties of the language of all factors of paper-folding sequences are studied by means of explicit 2-automatic constructions.

MSC:

11B85 Automata sequences
68R15 Combinatorics on words

Citations:

Zbl 0753.11011
Full Text: DOI

References:

[1] Allouche, J.-P, Suites infinies à répétitions bornées, Séminaire de Théorie des Nombres de Bordeaux, 20.01-20.11 (1983-1984), Exposé 20 · Zbl 0548.68069
[2] Allouche, J.-P, Automates finis en théorie des nombres, Expositiones Math., 5, 239-266 (1987) · Zbl 0641.10041
[3] Allouche, J.-P, The number of factors in a paperfolding sequence, Bull. Austral. Math. Soc., 46, 23-32 (1992) · Zbl 0753.11011
[4] Allouche, J.-P; Bacher, R., Toeplitz sequences, paperfolding, Hanoi towers and progression-free sequences of integers, Enseign. Math., 38, 315-327 (1992) · Zbl 0784.11008
[5] Allouche, J.-P; Liardet, P., Generalized Rudin-Shapiro sequences, Acta Arith., 60, 1, 1-27 (1991) · Zbl 0763.11010
[6] Allouche, J.-P; Shallit, J., The ring of \(k\)-regular sequences, Theoret. Comput. Sci., 98, 163-187 (1992) · Zbl 0774.68072
[9] Arnoux, P.; Rauzy, G., Représentation géométrique de suites de complexité \(2n + 1\), Bull. Soc. Math. France, 119, 2, 199-215 (1991) · Zbl 0789.28011
[10] Berstel, J.; Pocchiola, M., A geometric proof of the enumeration formula for Sturmian words, Internat. J. Alg. Comput., 3, 349-355 (1993) · Zbl 0802.68099
[11] Blanchard, A.; Mendès France, M., Symétrie et transcendance, Bull. Sci. Math., 106, 325-335 (1982) · Zbl 0492.10027
[12] Brlek, S., Enumeration of factors in the Thue-Morse word, Discrete Appl. Math., 24, 83-96 (1989) · Zbl 0683.20045
[13] Christol, G.; Kamae, T.; Mendès France, M.; Rauzy, G., Suites algébriques, automates et substitutions, Bull. Soc. Math. France, 108, 401-419 (1980) · Zbl 0472.10035
[14] Cobham, A., Uniform tag sequences, Math. Systems Theory, 6, 164-192 (1972) · Zbl 0253.02029
[15] Coven, E. M.; Hedlund, G. A., Sequences with minimal block growth, Math. Systems Theory, 7, 138-153 (1973) · Zbl 0256.54028
[16] Dekking, M.; Mendès France, M.; van der Poorten, A., FOLDS!, Math. Intelligencer, 4, 190-195 (1982) · Zbl 0493.10003
[17] de Luca, A.; Varricchio, S., Some combinatorial properties of the Thue-Morse sequence, Theoret. Comput. Sci., 63, 333-348 (1989) · Zbl 0671.10050
[18] Dulucq, S.; Gouyou-Beauchamp, D., Sur les facteurs des suites de Sturm, Theoret. Comput. Sci., 71, 381-400 (1990) · Zbl 0694.68048
[19] Hopcroft, J. E.; Ullman, J. D., Introduction to Automata Theory, Languages and Computation (1979), Addison-Wesley: Addison-Wesley Reading, MA · Zbl 0196.01701
[20] Jacobs, K.; Keane, M., 0-1 sequences of Toeplitz type, Z. Wahrsch. verw. Geb., 13, 123-131 (1969) · Zbl 0195.52703
[21] Lehr, S., A result about languages concerning paperfolding sequences, Math. Systems Theory, 25, 309-313 (1992) · Zbl 0780.68083
[22] Mendès France, M.; Tenenbaum, G., Dimension des courbes planes, papiers pliés et suites de Rudin-Shapiro, Bull. Soc. Math. France, 109, 207-215 (1981) · Zbl 0468.10033
[23] Mendès France, M.; van der Poorten, A. J., Arithmetic and analytic properties of paperfolding sequences, Bull. Austral. Math. Soc., 24, 123-131 (1981) · Zbl 0451.10018
[24] Mignosi, F., Sturmian words and ambiguous context-free languages, Internat. J. Found. Comput. Sci., 1, 3, 309-323 (1990) · Zbl 0746.68053
[25] Morse, M.; Hedlund, G. A., Symbolic dynamics, Amer. J. Math., 60, 815-866 (1938) · JFM 64.0798.04
[26] Morse, M.; Hedlund, G. A., Symbolic dynamics II. Sturmian trajectories, Amer. J. Math. Soc., 62, 1-42 (1940) · JFM 66.0188.03
[27] Mouline, J., Contribution à l’étude de la complexité des suites substitutives, Thèse (1990), Université de Provence
[28] Polya, G., Singularities of analytic functions, (Boas, R. P., Collected papers, Vol. 1 (1974), MIT Press: MIT Press Cambridge, MA) · JFM 57.1412.03
[30] Salon, O., Suites automatiques à multi-indices, Séminaire de Théorie des Nombres de Bordeaux, 4.01-4.27 (1986-1987), followed by an appendix of J. Shallit · Zbl 0653.10049
[31] Salon, O., Suites automatiques à multi-indices et algébricité, C.R. Acad. Sci. Paris, 305, 501-504 (1987) · Zbl 0628.10007
[32] Tapsoba, T., Complexité de suites automatiques, Thèse de troisième cycle (1987), Université Aix-Marseille II
[33] Thue, A., Über unendliche Zeichenreihen, Norske Vid. Selsk. Skr. I. Mat. Nat. Kl., Christiana, 7, 1-22 (1906) · JFM 39.0283.01
[34] Thue, A., Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen, Norske Vid. Selsk. Skr. I. Mat. Nat. Kl., Christiana, 1, 1-67 (1912) · JFM 44.0462.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.