×

Congruence semimodular varieties. I: Locally finite varieties. (English) Zbl 0815.08003

[Part II is reviewed below.]
The authors try to answer the question: How much of the structure involved in congruence modular varieties exists for congruence semimodular (CSM) varieties? They examine locally finite CSM varieties. For any finite algebra \(A\) in a CSM variety, natural congruences \(\underset {T}\sim\) are defined which play a role similar to that played by the commutator for algebras in a congruence modular variety. It is shown that if \(\underset {T} \sim\) is a congruence on the finite algebras of some locally finite CSM variety \(V\), then \(\underset {T} \sim\) induces a congruence \(\underset {T}\simeq\) on the subvariety lattice \(L_ V\) of \(V\). Furthermore, the quotient lattice \(L_ V/\underset {T} \simeq\) is both algebraic and dually algebraic and the natural map of \(L_ V\) onto \(L_ V/\underset {T}\simeq\) is complete (Theorem 4.3). The existence of irredundant subdirect product decomposition in CSM varieties is investigated. Further, it is proved that if \(V\) is a variety with the Congruence Extension Property, then \(V\) is CSM iff the 5-generated free \(V\)-algebra is CSM (Theorem 7.3). Theorem 8.5 states that a locally finite variety \(V\) is geometric iff \(V\) is a varietal product of a strongly Abelian geometric variety and an affine variety whose corresponding ring is finite and semi-simple.

MSC:

08B10 Congruence modularity, congruence distributivity
Full Text: DOI

References:

[1] Agliano, P.,Algebras whose congruence lattices are semimodular, Ph.D. Thesis, University of Hawaii, 1988.
[2] Agliano, P. andKearnes, K.,Congruence semimodular varieties II: Regular varieties, Algebra Universalis32 (1994), 270-296. · Zbl 0815.08004 · doi:10.1007/BF01191541
[3] Crawley, P. andDilworth, R. P.,Algebraic Theory of Lattices, Prentice-Hall, Englewood Cliffs, NJ, 1973.
[4] Day, A.,A characterization of modularity for congruence lattices of algebras, Can. Math. Bull.12 (1969), 167-173. · Zbl 0181.02302 · doi:10.4153/CMB-1969-016-6
[5] Freese, R. andMcKenzie, R.,Commutator Theory for Congruence Modular Varieties, LMS Lecture Note Series 125, Cambridge University Press, 1987.
[6] Hall, T. E.,On the lattice congruences on a semilattice, J. Austral. Math. Soc.12 (1971), 456-460. · Zbl 0238.06004 · doi:10.1017/S1446788700010338
[7] Hobby, D. andMcKenzie, R.,The Structure of Finite Algebras, Contemporary Mathematics, American Mathematical Society, Providence RI, 1988. · Zbl 0627.06013
[8] Jones, P.,Congruence semimodular varieties of semigroups, Semigroups, theory and applications (Oberwolfach 1986), Springer Lecture Notes in Math. No. 1320 (1988).
[9] Jónsson, B.,Algebras whose congruence lattices are distributive, Math. Scand.21 (1967), 110-121. · Zbl 0167.28401
[10] Kearnes, K.,Atomicity and Nilpotence, Can. J. Math.42 (1990), 365-382. · Zbl 0713.08005 · doi:10.4153/CJM-1990-020-1
[11] Kearnes, K.,Congruence lower semimodularity and 2-finiteness imply congruence modularity, Algebra Universalis28 (1991), 1-11. · Zbl 0725.08003 · doi:10.1007/BF01190406
[12] Kearnes, K.,Relatively congruence distributive subquasivarieties of a congruence modular variety, Bull. Austral. Math. Soc.41 (1990), 87-96. · Zbl 0689.08003 · doi:10.1017/S0004972700017871
[13] Kearnes, K.,Type preservation in locally finite varieties with the CEP, Can. J. Math.43 (1991), 748-769. · Zbl 0759.08010 · doi:10.4153/CJM-1991-043-1
[14] Kearnes, K. andMcKenzie, R.,Commutator theory for relatively modular quasivarieties, Trans. Amer. Math. Soc.331 (1992), 465-502. · Zbl 0772.08007 · doi:10.2307/2154123
[15] Kiss, E.,Each Hamiltonian variety has the congruence extension property, Algebra Universalis12 (1981), 395-398. · doi:10.1007/BF02483899
[16] Kiss, E. andPröhle, P.,Problems and results in tame congruence theory (A survey of the ’88 Budapest workshop), Algebra Universalis29 (1992), 151-171. · Zbl 0759.08003 · doi:10.1007/BF01190604
[17] Kiss, E. andValeriote, M.,Abelian algebras and the Hamiltonian property, J. Pure and Applied Algebra87 (1993), 37-49. · Zbl 0779.08004 · doi:10.1016/0022-4049(93)90067-4
[18] Mal’cev, A. I.,On the general theory of algebraic systems, Mat. Sbornik77 (1954), 3-20.
[19] McKenzie, R., McNulty, G. andTaylor, W.,Algebras, Lattices, Varieties, Vol I, Wadsworth and Brooks Cole, Monterey, California, 1987.
[20] Ore, O.,Theory of equivalence relations, Duke Math. J.9 (1942), 573-627. · Zbl 0060.06201 · doi:10.1215/S0012-7094-42-00942-6
[21] Taylor, W.,Characterizing Mal’cev conditions, Algebra Universalis3 (1973), 351-397. · Zbl 0304.08003 · doi:10.1007/BF02945141
[22] Taylor, W.,The fine spectrum of a variety, Algebra Universalis5 (1975), 263-303. · Zbl 0336.08004 · doi:10.1007/BF02485261
[23] Valeriote, M.,On Decidable Locally Finite Varieties, Ph.D. Dissertation, U.C. Berkeley, 1986.
[24] Kearnes, K.,A hamiltonian property for nilpotent algebras, preprint, 1994.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.