×

Uniqueness for the harmonic map flow in two dimensions. (English) Zbl 0814.35057

The following uniqueness theorem is proved: Let \(M\) be a 2-dimensional Riemannian manifold with smooth boundary. If \(u,v \in H^ 1 (M \times [0,T]\); \(S^ N)\) are weak heat flows for harmonic maps, with nonincreasing energy in time, and with the same initial data and boundary value, then \(u=v\). This theorem differs from a similar result due to T. Rivière, in which a small energy assumption was made but without the nonincreasing energy assumption.

MSC:

35K60 Nonlinear initial, boundary and initial-boundary value problems for linear parabolic equations
58E20 Harmonic maps, etc.
58J35 Heat and other parabolic equation methods for PDEs on manifolds
Full Text: DOI

References:

[1] M. Struwe: On the evolution of harmonic mappings of Riemannian surfaces. Comment. Math. Helv.60, (1985) 558–551 · Zbl 0595.58013 · doi:10.1007/BF02567432
[2] K.C. Chang: Heat flow and boundary value problem for harmonic maps. Ann. Inst. Henri Poincaré6 (1989) 363–396
[3] T. Rivière: Flot des applications harmoniques en dimension deux. (preprint ENS-Cachan 1993)
[4] F. Hélein: Régularité des applications faiblement harmoniques entre une surface et une sphère. C.R.A.S Paris311 (1990) 519–524 · Zbl 0728.35014
[5] P. Gilkey: Invariance Theory, the heat equation and the Atiyah-Singer index theorem. Publish or Perish, Inc. 1984 · Zbl 0565.58035
[6] P. Grisvard: Equations différentielles abstraites. Ann. Sc. ENS2 (1969) 311–395 · Zbl 0193.43502
[7] J.L. Lions, E. Magenes: Problèmes aux limites non homogènes et applications. Vol. 2, Paris: Dunod · Zbl 0212.43801
[8] H. Wente: An existence theorem for surfaces of constant mean curvature. J. Math. Anal. Appl.26 (1969) 318–344 · Zbl 0181.11501 · doi:10.1016/0022-247X(69)90156-5
[9] H. Brezis, J.M. Coron: Multiple solutions of H-systems and Rellich’s conjecture. Comm. Pure Appl. Math.37 (1984) 149–188 · Zbl 0537.49022 · doi:10.1002/cpa.3160370202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.