×

Analysis of the static spherically symmetric SU\((n)\)-Einstein-Yang-Mills equations. (English) Zbl 0813.53049

Summary: The singular boundary value problem that arises for the static spherically symmetric SU\((n)\)-Einstein-Yang-Mills equations in the so- called magnetic case is analyzed. Among the possible actions of SU(2) on a SU\((n)\)-principal boundes over space-time there is one which appears to be the most natural. If one assumes that no electrostatic type component is present in the Yang-Mills fields and the gauge is suitably fixed a set of \(n-1\) second-order and two first-order differential equations is obtained for \(n-1\) gauge potentials and two metric components as functions of the radial distance. This system generalizes the one for the case \(n=2\) that leads to the discrete series of the Bartnick-Mckinnon and the corresponding black hole solutions. It is highly nonlinear and singular at \(r=\infty\) and at \(r=0\) or at the black hole horizon but it is known to admit at least one series of discrete solutions which are scaled versions of the \(n=2\) case. In this paper local existence and uniqueness of solutions near these singular points is established which turns out to be a nontrivial problem for general \(n\). Moreover, a number of new numerical soliton (i.e. globally regular) numerical solutions of the SU(3)-EYM equations are found that are not scaled \(n=2\) solutions.

MSC:

53Z05 Applications of differential geometry to physics
81T13 Yang-Mills and other gauge theories in quantum field theory
83C75 Space-time singularities, cosmic censorship, etc.
Full Text: DOI

References:

[1] Aichelburg, P.C., Bizon, P.: Magnetically charged black holes and their stability. Phys. Rev. D (3)48, 607–615 (1993) · doi:10.1103/PhysRevD.48.607
[2] Bartnik, R.: The symmetrically symmetric Einstein Yang-Mills equations. Relatively Today: Proceedings of the third Hungarian relativity workshop (Z. Perjés, ed.), 1989, Tihany, Commack, NY: Nova Science Pub. 1992, pp. 221–240
[3] Bartnik, R., Mckinnon, J.: Particlelike solutions of the Einstein Yang-Mills equations. Phys. Rev. Lett.61, 141–144 (1988) · doi:10.1103/PhysRevLett.61.141
[4] Brodbeck, O., Straumann, N.: A generalized Birkhoff theorem for the Einstein-Yang-Mills system. J. Math. Phys.34, 2412–2423 (1993) · Zbl 0787.53069 · doi:10.1063/1.530126
[5] Droz, S., Heusler, M., Straumann, N.: New black hole solutions with hair. Phys. Lett. B268, 371–476 (1991) · doi:10.1016/0370-2693(91)91592-J
[6] Gal’tsov, D.V., Volkov, M.S.: Sphalerons in Einstein-Yang-Mills theory. Phys. Lett. B273, 255–259 (1991) · doi:10.1016/0370-2693(91)91680-T
[7] Gal’tsov, D.V., Volkov, M.S.: Charged non-abelianSU(3) Einstein-Yang-Mills black holes. Phys. Lett. B274, 173–178 (1992) · doi:10.1016/0370-2693(92)90519-A
[8] Gregory, R., Harvey, J.: Black holes with a massive dilaton. Phys. Rev. D (3)47, 2411–2422 (1993) · doi:10.1103/PhysRevD.47.2411
[9] Hille, E.: Ordinary differential equations in the complex domain. New York: Wiley 1976 · Zbl 0343.34007
[10] Horne, J.H., Horowitz, G.T.: Black holes coupled to a massive dilaton. Nucl. Phys. B399, 169–196 (1993) · doi:10.1016/0550-3213(93)90621-U
[11] Karlin, S., McGregor, J.L.: The Hahn polynomials, formulas and an application. Scripta Mathematica26, 33–46 (1961) · Zbl 0104.29103
[12] Künzle, H.P.:SU(n)-Einstein-Yang-Mills fields with spherical symmetry. Classical Quantum Gravity8, 2283–2297 (1991) · Zbl 0733.53061 · doi:10.1088/0264-9381/8/12/013
[13] Künzle, H.P., Masood-ul-Alam, A.K.M.: Spherically symmetric staticSU(2) Einstein-Yang-Mills fields. J. Math. Phys.21, 928–935 (1990) · Zbl 0701.53091 · doi:10.1063/1.528773
[14] Künzle, H.P., Masood-ul-Alam, A.K.M.: Pure Yang-Mills-fields on asymptotically flat curved \(\mathbb{R}\)3. Classical Quantum Gravity10, 801–804 (1993) · Zbl 0778.53025 · doi:10.1088/0264-9381/10/4/015
[15] Lavrelashvili, G., Maison, D.: Static spherically symmetric solutions of a Yang-Mills field coupled to a dilaton. Phys. Lett. B295, 67–72 (1992) · doi:10.1016/0370-2693(92)90090-Q
[16] Lavrelashvili, G., Maison, D.: Regular and black hole solutions of Einstein-Yang-Mills-dilaton theory. Max-Planck-Institut for Physik München preprint, 1993 · Zbl 0990.83508
[17] Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical recipes in C: the art of scientific computing (2nd ed.). Cambridge: Cambridge University Press 1992
[18] Smoller, J.A., Wasserman, A.G.: Existence of infinitely many smooth, static, global solutions of the Einstein/Yang-Mills equations. Commun. Math. Phys.151, 303–325 (1993) · Zbl 0778.53026 · doi:10.1007/BF02096771
[19] Smoller, J.A., Wasserman, A.G., Yau, S.-T.: Existence of black hole solutions for the Einstein-Yang/Mills equations. Commun. Math. Phys.154, 377–401 (1993) · Zbl 0779.53056 · doi:10.1007/BF02097002
[20] Smoller, J.A., Wasserman, A.G., Yau, S.-T., McLeod, J.B.: Smooth static solutions of the Einstein/Yang-Mills equations. Commun. Math. Phys.143, 115–147 (1991) · Zbl 0755.53061 · doi:10.1007/BF02100288
[21] Sudarsky, D., Wald, R.M.: Extrema of mass, stationarity and staticity, and solutions to the Einstein-Yang-Mills equations. Phys. Rev. D (3)46, 1453–1474 (1992) · doi:10.1103/PhysRevD.46.1453
[22] Zhou, Z., Straumann, N.: Nonlinear perturbations of Einstein-Yang-Mills solitons and non-abelian black holes. Nucl. Phys. B360, 180–196 (1991) · doi:10.1016/0550-3213(91)90439-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.