×

Once more on the function \(\sigma_ A(M)\). (English. Russian original) Zbl 0809.11053

Lith. Math. J. 32, No. 1, 81-93 (1992); translation from Liet. Mat. Rink. 32, No. 1, 105-121 (1992).
For \(q>0\), \(0<\delta <1/2\) and \(x>0\), let \[ D_{q-1} (x,\delta)= {\textstyle {1\over {\Gamma(q)}}} \sum_{m\leq x} (x-m)^{q-1} \sigma_{-\delta} (m), \] where as usual for a real \(a\), \(\sigma_ a(m)= \sum_{d\mid m} d^ a\). Moreover, let \[ \Delta_{-\delta} (x)= D_ 0(x,\delta)+ {\textstyle {1\over 2}} \zeta(\delta)- x\zeta (1+\delta)- {{x^{1-\delta} \zeta(1-\delta)} \over {1-\delta}}. \] The author derives Voronoi-type expansions for \(D_{q-1} (x,\delta)\) and \(\Delta_{- \delta} (x)\) in terms of Bessel functions. As a corollary he proves that for every \(\varepsilon>0\) we have \(\Delta_{-\delta} (x)= O(x^{1/3- (\delta/6) +\varepsilon})\).

MSC:

11N37 Asymptotic results on arithmetic functions
Full Text: DOI

References:

[1] A. Oppenheim, Some identities in the theory of numbers,Proc. London Math. Soc.,26 (2), 295–350 (1927). · JFM 53.0150.02 · doi:10.1112/plms/s2-26.1.295
[2] K. Chandrasekharan and R. Narasimhan, Hecke’s functional equation and arithmetical identities,Ann. Math.,74 (2), 1–23 (1961). · Zbl 0107.03702 · doi:10.2307/1970304
[3] K. Chandrasekharan and R. Narasimhan, Functional equations with multiple gamma factors and the average order of arithmetical functions,Ann. Math.,76, (2), 93–136 (1962). · Zbl 0211.37901 · doi:10.2307/1970267
[4] B. C. Berndt, Arithmetical identities and Hecke’s functional equation,Proc. Edinburgh Math. Soc.,16, 221–226 (1969). · Zbl 0175.32801 · doi:10.1017/S0013091500012724
[5] B. C. Berndt, Identities involving the coefficients of a class of Dirichlet series. I,Trans. Amer. Math. Soc.,137, 345–359 (1969). · Zbl 0175.32802 · doi:10.2307/1994808
[6] H.-E. Richert, Über Dirichletreihen mit Funktionalgleichungen,Acad. Serbe Sc. Publ. Inst. Math.,11, 37–124 (1957).
[7] A. L. Dixon and W. L. Ferrar, Lattice-point sumation formulae,Quart. J. Math. (Oxford),2, 31–54 (1931). · Zbl 0001.13001 · doi:10.1093/qmath/os-2.1.31
[8] A. Ivič,The Riemann Zeta-Function, John Wiley &amp; Sons, New York (1985).
[9] G. N. Watson,A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge (1944). · Zbl 0063.08184
[10] A. A. Karatsuba,Principles in Analytic Theory of Numbers [in Russian], Nauka, Moscow (1975). · Zbl 0428.10019
[11] K. Prachar,Primzahlverteilung, Springer-Verlag, Berlin-Göttingen-Heidelberg (1957).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.