×

Quantum deformation of classical groups. (English) Zbl 0806.16040

Let \(A(G)\) be the coordinate algebra of a Lie group \(G\). A quantum deformation \(A(G_ q)\) of \(A(G)\) is a one-parameter family of Hopf algebras whose representation theories are the same as those of \(A(G)\). The author constructs the quantum deformations of \(A(O(N))\), \(A(SO(N))\) and \(A(Sp(N))\) by using Jimbo’s solutions of the Yang-Baxter equation and determines their Peter-Weyl decompositions. For this purpose, he investigates the so-called quantum matrix bialgebras, and defines Hopf algebras \(A(G_ q)\) as quotients of corresponding quantum matrix bialgebras. Also, he studies group-like elements of these quantum matrix bialgebras and gives a new realization of the universal \(R\)-matrix.

MSC:

16W30 Hopf algebras (associative rings and algebras) (MSC2000)
17B37 Quantum groups (quantized enveloping algebras) and related deformations
16S80 Deformations of associative rings
17B60 Lie (super)algebras associated with other structures (associative, Jordan, etc.)
22E70 Applications of Lie groups to the sciences; explicit representations
81R05 Finite-dimensional groups and algebras motivated by physics and their representations
81U20 \(S\)-matrix theory, etc. in quantum theory
Full Text: DOI

References:

[1] Abe, E., Hopf algebras, Cambridge tracts in mathematics, 74, Cambridge University Press, Cambridge, 1980.
[2] Bergman, G.M., The Diamond Lemma for Ring Theory, Adv. in Math., 29 (1978), 178-218. · Zbl 0326.16019 · doi:10.1016/0001-8708(78)90010-5
[3] Brauer, R., On algebras which are connected with the semisimple continuous groups, Ann. of Math., 38 (1937), 857-872. · Zbl 0017.39105 · doi:10.2307/1968843
[4] Drin’feld, V.G., Quantum Groups, Proc. ICM, Berkeley, 1986.
[5] Faddeev, L.D., Reshetikhin, N. Yu. and Takhtajan, L. A., Quantization of Lie groups and Lie algebras, Algebra and Analysis, 1 (1989), 178-206 (in Russian). · Zbl 0715.17015
[6] Green, J.A., Polynomial Representations of GLn, Lecture Notes in Math., 830, Springer, Berlin, 1980. · Zbl 0451.20037
[7] Humphreys, J.E., Introduction to Lie algebras and representation theory, Springer, Berlin-Heidelberg-New York, 1972. · Zbl 0254.17004
[8] Hashimoto, M. and Hayashi, T., Quantum multilinear algebra, preprint. · Zbl 0776.17007 · doi:10.2748/tmj/1178227246
[9] Jimbo, M., A g-difference analogue of £7(g) and the Yang-Baxter equation, Lett. in Math. Phys., 10 (1985), 63-69. · Zbl 0587.17004 · doi:10.1007/BF00704588
[10] - , Quantum R matrix related to the generalized Toda system : an algebraic approach, Lecture Notes in Phys., 246, 335-361, Springer, Berlin, 1986. - A <?-analogue of £/(gl(AH-l)), Hecke algebra and the Yang-Baxter equa- tion, Lett, in Math. Phys., 11 (1986), 247-252.
[11] Kulish, P. P., Reshetikhin, N. Yu. and Sklyanin, E. K., Yang-Baxter equation and representation theory. I, Lett, in Math. Phys., 5 (1981), 393-403. · Zbl 0502.35074 · doi:10.1007/BF02285311
[12] Lusztig, G., Quantum deformations of certain simple modules over enveloping algebras, Adv. in Math., 70 (1988), 237-249. · Zbl 0651.17007 · doi:10.1016/0001-8708(88)90056-4
[13] Lyubashenko, V. V., Hopf algebras and vector-symmetries, Uspekhi Mat. Nauk, 41-5 (1986), 185-186 (in Russian). · Zbl 0649.16008 · doi:10.1070/RM1986v041n05ABEH003441
[14] Majid, S., Quasitriangular Hopf algebras and Yang-Baxter equations, preprint. · Zbl 0709.17009 · doi:10.1142/S0217751X90000027
[15] Manin, Yu.I., Some remarks on Koszul algebras and quantum groups, Ann. Inst. Fourier, Grenoble, 37 (1987), 191-205. · Zbl 0625.58040 · doi:10.5802/aif.1117
[16] Matsumoto, H., Generateurs et relations des groupes de Weyl generalises, C. R. Acad. Sci. Paris., 258 (1964), 3419-3422. · Zbl 0128.25202
[17] Reshetikhin, N. Yu., Quantum universal enveloping algebras, The Yang-Baxter equation and invariants of links. I, preprint.
[18] Rosso, M., Finite dimensional representations of quantum analog of the enveloping algebra of a complex simple Lie algebra, Comm. Math. Phys., 117 (1988), 581-593. · Zbl 0651.17008 · doi:10.1007/BF01218386
[19] – , Analogues de la forme de Killing et du theoreme d’Harish-Chandra pour les groupes quantiques, preprint. · Zbl 0721.17012
[20] Schur, I., Uber eine Klasse von Matrizen, die sich einer gegebenen Matrix zuordnen lassen (1901) ; in I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973.
[21] Takeuchi, M., Matric bialgebras and quantum groups, Israel J. Math., in press. · Zbl 0723.17013 · doi:10.1007/BF02764621
[22] Tanisaki, T., Finite dimensional representations of quantum groups, preprint. · Zbl 0729.17008
[23] Weyl, H., The classical groups, Princeton Univ. Press, N.J., 1946. · Zbl 1024.20502
[24] Woronowicz, S. L., Tannaka-Klein duality for compact matrix pseudogroups Twisted Sf/(AO groups, Invent. Math., 93 (1988), 35-76. · Zbl 0664.58044 · doi:10.1007/BF01393687
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.