×

Primitive normal polynomials over finite fields. (English) Zbl 0805.11083

Summary: We significantly extend the range of published tables of primitive normal polynomials over finite fields. For each \(p^ n < 10^{50}\) with \(p \leq 97\), we provide a primitive normal polynomial of degree \(n\) over \(\mathbb{F}_ p\). Moreover, each polynomial has the minimal number of nonzero coefficients among all primitive normal polynomials of degree \(n\) over \(\mathbb{F}_ p\). The roots of such a polynomial generate a primitive normal basis of \(\mathbb{F}_{p^ n}\) over \(\mathbb{F}_ p\), and so are of importance in many computational problems. We also raise several conjectures concerning the distribution of such primitive normal polynomials, including a refinement of the primitive normal basis theorem. In the tables on pp. S 19–S 23 only the nonzero terms are represented so that, for example, the polynomial \(x^ 8 + x^ 7 + 3\) over \(\mathbb{F}_ 7\) is listed as 8:1, 7:1, 0:3. An asterisk denotes the fact that for the given polynomial \(f(x)\), the reciprocal polynomial \(f(x)^* = x^ n f(1/x)\) is also primitive normal. Copies of the tables, either in electronic or hardcopy form, are available upon request from the authors [mullen@math.psu.edu].

MSC:

11T06 Polynomials over finite fields
11T30 Structure theory for finite fields and commutative rings (number-theoretic aspects)
11-04 Software, source code, etc. for problems pertaining to number theory
11Y40 Algebraic number theory computations
Full Text: DOI

References:

[1] G. B. Agnew, T. Beth, R. C. Mullin, and S. A. Vanstone, Arithmetic operations in \?\?(2^{\?}), J. Cryptology 6 (1993), no. 1, 3 – 13. · Zbl 0793.11032 · doi:10.1007/BF02620228
[2] Safwan Akbik, Normal generators of finite fields, J. Number Theory 41 (1992), no. 2, 146 – 149. · Zbl 0804.11067 · doi:10.1016/0022-314X(92)90114-5
[3] Jacob T. B. Beard Jr. and Karen I. West, Some primitive polynomials of the third kind, Math. Comp. 28 (1974), 1166 – 1167; addendum, ibid. 28 (1974), no. 128, loose microfiche suppl. C1 – C5. · Zbl 0294.12011
[4] L. Carlitz, Primitive roots in a finite field, Trans. Amer. Math. Soc. 73 (1952), 373 – 382. · Zbl 0048.27302
[5] Stephen D. Cohen, Primitive elements and polynomials with arbitrary trace, Discrete Math. 83 (1990), no. 1, 1 – 7. · Zbl 0711.11048 · doi:10.1016/0012-365X(90)90215-4
[6] Stephen D. Cohen, Primitive elements and polynomials: existence results, Finite fields, coding theory, and advances in communications and computing (Las Vegas, NV, 1991) Lecture Notes in Pure and Appl. Math., vol. 141, Dekker, New York, 1993, pp. 43 – 55. · Zbl 0812.11069
[7] H. Davenport, Bases for finite fields, J. London Math. Soc. 43 (1968), 21 – 39. · Zbl 0159.33901 · doi:10.1112/jlms/s1-43.1.21
[8] Shuhong Gao and Hendrik W. Lenstra Jr., Optimal normal bases, Des. Codes Cryptogr. 2 (1992), no. 4, 315 – 323. · Zbl 0770.11055 · doi:10.1007/BF00125200
[9] Joachim von zur Gathen and Mark Giesbrecht, Constructing normal bases in finite fields, J. Symbolic Comput. 10 (1990), no. 6, 547 – 570. · Zbl 0718.11065 · doi:10.1016/S0747-7171(08)80158-7
[10] T. Aaron Gulliver, Micaela Serra, and Vijay K. Bhargava, The generation of primitive polynomials in \?\?(\?) with independent roots and their applications for power residue codes, VLSI testing and finite field multipliers using normal basis, Internat. J. Electron. 71 (1991), no. 4, 559 – 576. · Zbl 0735.94009 · doi:10.1080/00207219108925501
[11] Dirk Hachenberger, On primitive and free roots in a finite field, Appl. Algebra Engrg. Comm. Comput. 3 (1992), no. 2, 139 – 150. · Zbl 0766.11049 · doi:10.1007/BF01387196
[12] Tom Hansen and Gary L. Mullen, Primitive polynomials over finite fields, Math. Comp. 59 (1992), no. 200, 639 – 643, S47 – S50. · Zbl 0770.11053
[13] -, Primitive polynomials of low weight, Finite Fields, Coding Theory, and Advances in Communications and Computing , Lecture Notes in Pure and Appl. Math., vol. 141, Marcel Dekker, New York, 1993, p. 434.
[14] Dieter Jungnickel, Finite fields, Bibliographisches Institut, Mannheim, 1993. Structure and arithmetics. · Zbl 0779.11058
[15] H. W. Lenstra Jr. and R. J. Schoof, Primitive normal bases for finite fields, Math. Comp. 48 (1987), no. 177, 217 – 231. · Zbl 0615.12023
[16] Rudolf Lidl, Computational problems in the theory of finite fields, Appl. Algebra Engrg. Comm. Comput. 2 (1991), no. 2, 81 – 89. · Zbl 0745.11056 · doi:10.1007/BF01810569
[17] Rudolf Lidl and Harald Niederreiter, Finite fields, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 20, Cambridge University Press, Cambridge, 1997. With a foreword by P. M. Cohn. · Zbl 0866.11069
[18] A. J. Menezes, ed., Applications of finite fields, Kluwer, Dordrecht, 1993.
[19] R. C. Mullin, I. M. Onyszchuk, S. A. Vanstone, and R. M. Wilson, Optimal normal bases in \?\?(\?\(^{n}\)), Discrete Appl. Math. 22 (1988/89), no. 2, 149 – 161. · Zbl 0661.12007 · doi:10.1016/0166-218X(88)90090-X
[20] Harald Niederreiter, Factoring polynomials over finite fields using differential equations and normal bases, Math. Comp. 62 (1994), no. 206, 819 – 830. · Zbl 0797.11092
[21] Štefan Schwarz, Irreducible polynomials over finite fields with linearly independent roots, Math. Slovaca 38 (1988), no. 2, 147 – 158 (English, with Russian summary). · Zbl 0653.12012
[22] Štefan Schwarz, Construction of normal bases in cyclic extensions of a field, Czechoslovak Math. J. 38(113) (1988), no. 2, 291 – 312. · Zbl 0671.12006
[23] I. A. Semaev, Construction of polynomials, irreducible over a finite field, with linearly independent roots, Mat. Sb. (N.S.) 135(177) (1988), no. 4, 520 – 532, 560 (Russian); English transl., Math. USSR-Sb. 63 (1989), no. 2, 507 – 519.
[24] Victor Shoup, Searching for primitive roots in finite fields, Math. Comp. 58 (1992), no. 197, 369 – 380. · Zbl 0747.11060
[25] Igor E. Shparlinski, Computational and algorithmic problems in finite fields, Mathematics and its Applications (Soviet Series), vol. 88, Kluwer Academic Publishers Group, Dordrecht, 1992. · Zbl 0780.11064
[26] S. A. Stepanov and I. E. Shparlinskiĭ, On the construction of a primitive normal basis of a finite field, Mat. Sb. 180 (1989), no. 8, 1067 – 1072, 1151 (Russian); English transl., Math. USSR-Sb. 67 (1990), no. 2, 527 – 533. · Zbl 0694.12014
[27] S. A. Stepanov and I. E. Shparlinskiy, On the construction of primitive elements and primitive normal bases in a finite field, Computational number theory (Debrecen, 1989) de Gruyter, Berlin, 1991, pp. 1 – 14. · Zbl 0742.11060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.