×

Interface microcrack nucleation. (English) Zbl 0803.73056


MSC:

74R99 Fracture and damage
74A60 Micromechanical theories
74M25 Micromechanics of solids
Full Text: DOI

References:

[1] Anderson, P. M.; Wang, J. R.; Rich, J. R., Thermodynamic and mechanical models of interfacial cmbrittlement, (Azrin, M.; Olson, G. B.; Wright, E. S., Proc. Sagamore Conf. on Innovations in High Strength Steel Technology (1989)), 67
[2] Ashby, M. F.; Hallam, S. D., The failure of brittle solids containing small cracks under compressive stress states, Acta Metall., 34, 497-510 (1986)
[3] Beltz, G. E.; Rice, J. R., Dislocation nucleation versus cleavage decohesion at crack tips, (Love, T. C.; Rollett, A. D.; Follansbee, P. S.; Daehn, G. S., Modeling the Deformation of Crystalline Solids (1991), The Minerals, Metals and Materials Society), 457-480
[4] Bilby, B. A.; Hewitt, J., Hydrogen in steel—the stability of microcracks, Acta Metall., 10, 587-600 (1962)
[5] Cherepanov, A. G., Slip-line as a source of microcracks, (Interaction of Bodies in a Fluid Having Free Boundaries (1987), State University Press: State University Press Cheboxary), 141-153
[6] Cherepanov, A. G.; Cherepanov, G. P., On one mechanism of the crack nucleation in amorphous metals, Phys. Metals Physical Metall, No. 2, 345 (1990)
[7] Cherepanov, G. P., The stress state in a heterogeneous plate with slits, Izvestia AN SSSR, OTN, Mekhan. i Mashin, 1, 131-137 (1962), (in Russian).
[8] Cherepanov, G. P., Mechanics of Brittle Fracture (1979), McGraw Hill: McGraw Hill New York · Zbl 0442.73100
[9] Cherepanov, G. P., Fracture Mechanics of Composite Materials (1983), Nauka Publishers: Nauka Publishers Moscow, (in Russian). · Zbl 0581.73104
[10] Cherepanov, G. P., Some novel approaches in mechanics of composites, (Proc. Symp. Composite Materials and Structures on the 1993 ASME Winter Annual Meeting (1993), ASME: ASME New York), Invited review paper in · Zbl 0389.73001
[11] Cherepanov, G. P.; Kipnis, L. A., The theory of Cottrell mechanism concerning the nucleation of cracks in metals, Soviet Mech. Solids, No. 3, 626 (1983)
[12] Cottrell, A. H., Trans. AIME, 212, 192 (1958)
[13] England, A. H., A crack between dissimilar media, J. Appl. Mech., 32, 400-402 (1965)
[14] Erdogan, F., Stress distribution in bonded dissimilar materials with cracks, J. Appl. Mech., 32, 403-410 (1965)
[15] Francois, D.; Wilshaw, T. R., The effect of hydrostatic pressure on the cleavage fracture of polycrystalline materials, J. Appl. Phys., 39, 4170-4177 (1968)
[16] Gakhov, F. D., Boundary Value Problems (1966), Pergamon Press: Pergamon Press London · Zbl 0141.08001
[17] Hutchinson, J. W.; Evans, A. G.; Dalgleish, B. J.; He, M., On crack path selection and the interface fracture energy in bimaterial systems, Acta Metall., 37, 12, 3249-3254 (1989)
[18] Hutchinson, J. W.; Suo, Z., Mixed mode cracking in layered materials, (Hutchinson, J. W.; Wu, T. Y., Advances in Applied Mechanics, Vol. 29 (1991), Academic Press: Academic Press New York) · Zbl 0790.73056
[19] Kolosov, G. V., Application of the Theory of Functions of One Complex Variable to the Plane Problem of the Mathematical Theory of Elasticity (1909), Yuriev University Press, (in Russian)
[20] Loeber, J. F.; Sih, G. C., Green’s function for crack in nonhomogeneous materials, J. Appl. Mech., 34, 1, 124 (1967) · Zbl 0154.22302
[21] Miedema, A. R., Surface energies of solid metals, Z. Metallkunde, 69, 632 (1978)
[22] Miedema, A. R.; Den Broeder, F. J.A., On the interfacial energy in solid-solid and solid-liquid combinations, Z. Metallkunde, 70, 278 (1979)
[23] Morii, M.; Nemat-Nasser, S., Brittle failure in compression: splitting, faulting and brittle-ductile transition, Phil. Trans. R. Soc., Lond., 319, 337-374 (1986) · Zbl 0634.73109
[24] Murr, J.; Daw, S.; Baskes, M. I., Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals, Phys. Rev., B29, 12, 6443-6453 (1984)
[25] Muskhelishvili, N. I., Some Basic Problems in the Theory of Elasticity (1963), Noordhoff: Noordhoff Amsterdam, (Trans. by J.R.M. Radock) · Zbl 0124.17404
[26] Nicholas, M., The strength of metal-alumina interfaces, J. Mater. Sci., 3, 571 (1968)
[27] Rick, J. R.; Sih, G. C., Plane problems of crack in dissimilar media, J. Appl. Mech., 32, 418-423 (1965)
[28] Rice, J. R.; Wang, J. S., Embrittlement of interfaces by solute segregation, Mater. Sci. Engng, A107, 23-40 (1989)
[29] Rose, J. H.; Ferrante, J.; Smith, J. R., Universal binding energy curves for metals and bimetallic interfaces, Phys. Rev. Lett., 47, 9, 675-678 (1981)
[30] Stroh, A. N., The formation of cracks as a result of plastic flow, (Proc. R. Soc., Lond., A223 (1954)), 404-414 · Zbl 0056.23503
[31] Stroh, A. N., A theory of the fracture of metals, Adv. Phys., 6, 418-465 (1957)
[32] Smith, E.; Barnby, J. T., Crack nucleation in crystalline solids, Metal Sci., 1, 56-64 (1967)
[33] Suo, Z.; Hutchinson, J. W., Interface crack between two elastic layers, Int. J. Fracture, 43, 1-18 (1990)
[34] Williams, M. L., The stress around a fault or crack in dissimilar media, Bull. Seismol. Soc. Am., 49, 199-204 (1959)
[35] Zener, C., The micro-mechanism of fracture, (Johnson, F.; Roop, W. P.; Bayles, R. T., Fracture of Metals (1948), ASM: ASM Cleveland, OH), 3-31
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.