×

On the positive solutions of the Matukuma equation. (English) Zbl 0801.35024

The author proves that for \(1< p<5\) every positive entire solution \(u\) (also with infinite total mass) of the Matukuma equation \[ \Delta u+{1\over 1+| x|^ 2} u^ p= 0\quad\text{in }\mathbb{R}^ 3 \] is radially symmetric about the origin and \(u_ r< 0\) in \(r>0\). This completes the results obtained before by Y. Li and W.-M. Ni [Arch. Ration. Mech. Anal. 108, No. 2, 175-194 (1989; Zbl 0705.35039); ibid. 118, No. 3, 223-243 (1992; Zbl 0764.35014)].
Reviewer: V.Mustonen (Oulu)

MSC:

35J60 Nonlinear elliptic equations
35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs
Full Text: DOI

References:

[1] P. Aviles, Local behavior of solutions of some elliptic equations , Comm. Math. Phys. 108 (1987), no. 2, 177-192. · Zbl 0617.35040 · doi:10.1007/BF01210610
[2] J. Batt, W. Faltenbacher, and E. Horst, Stationary spherically symmetric models in stellar dynamics , Arch. Rational Mech. Anal. 93 (1986), no. 2, 159-183. · Zbl 0605.70008 · doi:10.1007/BF00279958
[3] H. Berestycki and L. Nirenberg, On the method of moving planes and the sliding method , · Zbl 0784.35025 · doi:10.1007/BF01244896
[4] L. A. Caffarelli, B. Gidas, and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth , Comm. Pure Appl. Math. 42 (1989), no. 3, 271-297. · Zbl 0702.35085 · doi:10.1002/cpa.3160420304
[5] W. X. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations , Duke Math. J. 63 (1991), no. 3, 615-622. · Zbl 0768.35025 · doi:10.1215/S0012-7094-91-06325-8
[6] W. X. Chen and C. Li, Qualitative properties of solutions to some nonlinear elliptic equations in \(\mathbfR^2\) ,
[7] B. Gidas, W.-M. Ni, and L. Nirenberg, Symmetry and related properties via the maximum principle , Comm. Math. Phys. 68 (1979), no. 3, 209-243. · Zbl 0425.35020 · doi:10.1007/BF01221125
[8] B. Gidas, W. M. Ni, and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in \(\mathbf R\spn\) , Mathematical analysis and applications, Part A ed. L. Nachbin, Adv. in Math. Suppl. Stud., vol. 7, Academic Press, New York, 1981, pp. 369-402. · Zbl 0469.35052
[9] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order , Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. · Zbl 0562.35001
[10] H. Hopf, Differential geometry in the large , Lecture Notes in Mathematics, vol. 1000, Springer-Verlag, Berlin, 1983. · Zbl 0669.53001
[11] H. G. Kaper, M. K. Kwong, and Y. Li, On the positive solutions of the free-boundary problem for Emden-Fowler type equations , Partial differential equations with minimal smoothness and applications (Chicago, IL, 1990) eds. B. Dahlberg, E. Fabes, and R. Fefferman and D. Jerison and C. Kenig and J. Pipher, IMA Vol. Math. Appl., vol. 42, Springer, New York, 1992, pp. 163-172. · Zbl 0790.35116
[12] T. Kato, Growth properties of solutions of the reduced wave equation with a variable coefficient , Comm. Pure Appl. Math. 12 (1959), 403-425. · Zbl 0091.09502 · doi:10.1002/cpa.3160120302
[13] M. K. Kwong and Y. Li, Uniqueness of radial solutions of semilinear elliptic equations , Trans. Amer. Math. Soc. 333 (1992), no. 1, 339-363. JSTOR: · Zbl 0785.35038 · doi:10.2307/2154113
[14] N. Kawano, E. Yanagida, and S. Yotsutani, Structure theorems for positive radial solutions to \(\Delta u+K(| x|)u^p=0\) in \(\mathbfR^n\) , · Zbl 0793.34024
[15] C. Li, Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on unbounded domains , Comm. Partial Differential Equations 16 (1991), no. 4-5, 585-615. · Zbl 0741.35014 · doi:10.1080/03605309108820770
[16] Y. Li, Asymptotic behavior of positive solutions of equation \(\Delta u+K(x)u^ p=0\) in \(\mathbf R^ n\) , J. Differential Equations 95 (1992), no. 2, 304-330. · Zbl 0778.35010 · doi:10.1016/0022-0396(92)90034-K
[17] Y. Li, Symmetry properties of finite total mass solutions of Matukuma equation , Nonlinear diffusion equations and their equilibrium states, 3 (Gregynog, 1989) eds. W.-M. Ni, L. A. Peletier, and J. Serrin, Progr. Nonlinear Differential Equations Appl., vol. 7, Birkhäuser Boston, Boston, MA, 1992, pp. 375-389. · Zbl 0792.35055
[18] Y. Li and W.-M. Ni, On conformal scalar curvature equations in \(\mathbf R^ n\) , Duke Math. J. 57 (1988), no. 3, 895-924. · Zbl 0674.53048 · doi:10.1215/S0012-7094-88-05740-7
[19] Y. Li and W.-M. Ni, On the existence and symmetry properties of finite total mass solutions of the Matukuma equation, the Eddington equation and their generalizations , Arch. Rational Mech. Anal. 108 (1989), no. 2, 175-194. · Zbl 0705.35039 · doi:10.1007/BF01053462
[20] Y. Li and W.-M. Ni, On the asymptotic behavior and radial symmetry of positive solutions of semilinear elliptic equations in \(\mathbf R^ n\). I. Asymptotic behavior , Arch. Rational Mech. Anal. 118 (1992), no. 3, 195-222. · Zbl 0764.35013 · doi:10.1007/BF00387895
[21] Y. Li and W.-M. Ni, On the asymptotic behavior and radial symmetry of positive solutions of semilinear elliptic equations in \(\mathbf R^ n\). II. Radial symmetry , Arch. Rational Mech. Anal. 118 (1992), no. 3, 223-243. · Zbl 0764.35014 · doi:10.1007/BF00387896
[22] Y. Li and W.-M. Ni, Radial symmetry of positive solutions of nonlinear elliptic equations in \(\mathbfR^n\) , to appear in Comm. Partial Differential Equations. · Zbl 0788.35042 · doi:10.1080/03605309308820960
[23] T. Matukuma, The Cosmos , Iwanami Shoten, Tokyo, 1938.
[24] E. S. Noussair and C. A. Swanson, Solutions of Matukuma’s equation with finite total mass , Indiana Univ. Math. J. 38 (1989), no. 3, 557-561. · Zbl 0687.35032 · doi:10.1512/iumj.1989.38.38026
[25] W.-M. Ni and S. Yotsutani, On Matukuma’s equation and related topics , Proc. Japan Acad. Ser. A Math. Sci. 62 (1986), no. 7, 260-263. · Zbl 0638.35031 · doi:10.3792/pjaa.62.260
[26] W.-M. Ni and S. Yotsutani, Semilinear elliptic equations of Matukuma-type and related topics , Japan J. Appl. Math. 5 (1988), no. 1, 1-32. · Zbl 0655.35018 · doi:10.1007/BF03167899
[27] M. H. Protter and H. F. Weinberger, Maximum principles in differential equations , Prentice-Hall Inc., Englewood Cliffs, N.J., 1967. · Zbl 0153.13602
[28] J. Serrin, A symmetry problem in potential theory , Arch. Rational Mech. Anal. 43 (1971), 304-318. · Zbl 0222.31007 · doi:10.1007/BF00250468
[29] E. Yanagida, Structure of positive radial solutions of Matukuma’s equation , Japan J. Indust. Appl. Math. 8 (1991), no. 1, 165-173. · Zbl 0735.35064 · doi:10.1007/BF03167191
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.