×

Invariant measures and orbit closures for unipotent actions on homogeneous spaces. (English) Zbl 0801.22008

A survey paper concerning mainly the author’s results about the action of a unipotent subgroup \(U\) of a connected Lie group \(G\) on a homogeneous space \(G/\Gamma\), where \(\Gamma\) is a discrete subgroup of \(G\). The results were published in a series of papers beginning in 1990. Some new extensions, as well as applications to ergodic theory and number theory, are also discussed.

MSC:

22E40 Discrete subgroups of Lie groups
28D20 Entropy and other invariants
43A85 Harmonic analysis on homogeneous spaces
22D40 Ergodic theory on groups
43A05 Measures on groups and semigroups, etc.
53C30 Differential geometry of homogeneous manifolds

References:

[1] [BBo]F. Bien, A. Borel, Sous-groupes épimorphiques de groupes algebriques lineaires I, C.R. Acad. Sci. Paris 315 (1992).
[2] [BoP]A. Borel, G. Prasad, Values of isotropic quadratic forms atS-integral points, Composito Math. 83 (1992), 347–372. · Zbl 0777.11008
[3] [Bow]R. Bowen, Weak mixing and unique ergodicity on homogeneous spaces, Israel J. Math. 23 (1976), 267–273. · Zbl 0338.43014 · doi:10.1007/BF02761804
[4] [D1]S.G. Dani, Invariant measures and minimal sets of horospherical flows Invent. Math. 64 (1981), 357–385. · Zbl 0498.58013 · doi:10.1007/BF01389173
[5] [D2]S.G. Dani, On orbits of unipotent flows on homogeneous spaces, II Ergodic Theory and Dynamical Systems 6 (1986), 167–182. · Zbl 0601.22003
[6] [DM1]S.G. Dani, G.A. Margulis, Orbit closures of generic unipotent flows on homogeneous spaces ofS L (3, \(\mathbb{R}\)), Math. Ann. 286 (1990), 101–128. · Zbl 0679.22007 · doi:10.1007/BF01453567
[7] [DM2]S.G. Dani, G.A. Margulis, Values of quadratic forms at primitive integral points, Invent. Math. 98 (1989), 405–425. · Zbl 0682.22008 · doi:10.1007/BF01388860
[8] [DM3]S.G. Dani, G.A. Margulis, On limit distributions of orbits of unipotent flows and integral solutions of quadratic inequalities, C.R. Acad. Sci. Paris, Ser. I 314 (1992), 698–704. · Zbl 0780.22002
[9] [DSm]S.G. Dani, J. Smillie, Uniform distribution of horocycle orbits for Fuchsian groups, Duke Math. J. 5 (1984), 185–194. · Zbl 0547.20042 · doi:10.1215/S0012-7094-84-05110-X
[10] [EPe]R. Ellis, W. Perrizo, Unique ergodicity of flows on homogeneous spaces, Israel J. Math. 29 (1978), 276–284. · Zbl 0383.22004 · doi:10.1007/BF02762015
[11] [F1]H. Furstenberg, Strict ergodicity and transformations of the torus, Amer. J. Math. 83 (1961), 573–601. · Zbl 0178.38404 · doi:10.2307/2372899
[12] [F2]H. Furstenberg, The unique ergodicity of the horocyle flow, In ”Recent Advances in Topological Dynamics”, Lecture Notes in Math. 318, Springer, Berlin (1972), 95–115.
[13] [H]G.A. Hedlund, Fuchsian groups and transitive horocycles, Duke Math. J. 2 (1936), 530–542. · JFM 62.0392.03 · doi:10.1215/S0012-7094-36-00246-6
[14] [M1]G.A. Margulis, Discrete subgroups and ergodic theory, in ”Number Theory, Trace Formula and Discrete Groups”, Symposium in Honor of A. Selberg, Oslo 1987, Academic Press (1989), 377–398.
[15] [M2]G.A. Margulis, Dynamical and ergodic properties of subgroup actions on homogeneous spaces with applications to number theory, Proc. of ICM Kyoto (1990), 193–215.
[16] [MT]G.A. Margulis, G.M. Tomanov, Measure rigidity for algebraic groups over local fields, C.R. Acad. Sci. Paris, t. 315, Serie I (1992), 1221–1226. · Zbl 0789.22023
[17] [Mo]S. Mozes, Epimorphic subgroups and invariant measures, Preprint. · Zbl 0843.28008
[18] [MoS]S. Mozes, N. Shah, On the space of ergodic measures of unipotent flows, preprint. · Zbl 0818.58028
[19] [P]W. Parry, Ergodic properties of affine transformations and flows on nilmanifolds, Amer. J. Math. 91 (1969), 757–771. · Zbl 0183.51503 · doi:10.2307/2373350
[20] [R]M.S. Raghunathan, Discrete Subgroups of Lie Groups, Springer-Verlag (1972). · Zbl 0254.22005
[21] [Ra1]M. Ratner, Strict measure rigidity for unipotent subgroups of solvable groups, Invent. Math. 101 (1990), 449–482. · Zbl 0745.28009 · doi:10.1007/BF01231511
[22] [Ra2]M. Ratner, On measure rigidity of unipotent subgroups of semisimple groups, Acta Math. 165 (1990), 229–309. · Zbl 0745.28010 · doi:10.1007/BF02391906
[23] [Ra3]M. Ratner, On Raghunathan’s measure conjecture, Ann. of Math. 134 (1991), 545–607. · Zbl 0763.28012 · doi:10.2307/2944357
[24] [Ra4]M. Ratner, Raghunathan’s topological conjecture and distributions of unipotent flows, Duke Math. J. 63 (1991), 235–280. · Zbl 0733.22007 · doi:10.1215/S0012-7094-91-06311-8
[25] [Ra5]M. Ratner, Rigidity of horocycle flows, Ann. of Math. 115 (1982), 597–614. · Zbl 0506.58030 · doi:10.2307/2007014
[26] [Ra6]M. Ratner, Raghunathan’s Conjectures forSL(2,\(\mathbb{R}\)), Israel. J. Math. 80 (1992), 1–31. · Zbl 0785.22013 · doi:10.1007/BF02808152
[27] [Ra7]M. Ratner, Raghunathan’s conjectures forp-adic Lie groups, International Mathematics Research Notices, No. 5 (1993), 141–146. · Zbl 0801.22007 · doi:10.1155/S1073792893000145
[28] [S]N. Shah, Uniformly distributed orbits of certain flows on homogeneous spaces, Math. Ann. 289 (1991), 315–334. · doi:10.1007/BF01446574
[29] [V]W. Veech, Unique ergodicity of horospherical flows, Amer. J. Math. 99 (1977), 827–859. · Zbl 0365.28012 · doi:10.2307/2373868
[30] [W1]D. Witte, Rigidity of some translations on homogeneous spaces, Invent. Math. 81 (1985), 1–27. · Zbl 0571.22007 · doi:10.1007/BF01388769
[31] [W2]D. Witte, Measurable quotients of unipotent translations on homogeneous spaces, To appear in Transactions of AMS. · Zbl 0831.28010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.