×

Numerical simulations and physical aspects of supersonic vortex breakdown. (English) Zbl 0800.76328


MSC:

76M25 Other numerical methods (fluid mechanics) (MSC2010)
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
76J20 Supersonic flows
Full Text: DOI

References:

[1] Lambourne, N. C.; Bryer, D. W., Bursting of leading-edge votices: some observations and discussion of the phenomenon, (R&M 3282 (1961), Aeronautical Research Council)
[2] Sarpkaya, T., Effect of the adverse pressure gradient on vortex breakdown, AIAA Jl, 12, 602 (1974)
[3] Escudier, M. P.; Zender, N., Vortex flow regimes, J. Fluid Mech., 115, 105 (1982)
[4] Leibovich, S., Vortex stability and breakdown: survey and extension, AIAA Jl, 22, 1192 (1984)
[5] Grabowski, W. J.; Berger, S. A., Solutions of the Navier—Stokes equations for vortex breakdown, J. Fluid Mech., 75, 525 (1976) · Zbl 0336.76007
[6] Hafez, M.; Kuruvila, G.; Salas, M. D., Numerical study of vortex breakdown, J. Appl. Numer. Math., 2, 291 (1987) · Zbl 0601.76081
[7] Salas, M. D.; Kuruvila, G., Vortex breakdown simulation: a circumspect study of the steady, laminar, axisymmetric model, Computers Fluids, 17, 247 (1989)
[8] Menne, S., Vortex breakdown in an axisymmetric flow, AIAA Paper 88-0506 (1988)
[9] Wu, J. C.; Hwang, S., Computational study of vortex breakdown in a circular tube, AIAA Paper 91-1820 (1991)
[10] Menne, S.; Liu, C. H., Numerical simulation of a three-dimensional vortex breakdown, Z. Flugwiss Weltraumforsch., 14, 301 (1990)
[11] Spall, R. E.; Gatski, T. B.; Ash, R. L., The structure and dynamics of bubble-type vortex breakdown, (Proc. R. Soc. Lond., A429 (1990)), 613
[12] Breuer, M.; Hänel, D., Solution of the 3-D incompressible Navier—Stokes equations for the simulation of vortex breakdown, (Presented at 8th GAMM Conf.. Presented at 8th GAMM Conf., Delft, The Netherlands (1989)) · Zbl 0779.76049
[13] Krause, E., Vortex breakdown: physical issues and computational simulation, (Proc. 3rd Int. Congr. of Fluid Mechanics, Cairo, Egypt, Vol. 1 (1990)), 335-344
[14] Krause, E., The solution of the problem of vortex breakdown, (Presented at Int. Conf. on Numerical Methods for Fluid Dynamics. Presented at Int. Conf. on Numerical Methods for Fluid Dynamics, Oxford, U.K. (1990)) · Zbl 0571.76018
[15] Delery, J.; Horowitz, E.; Leuchter, O.; Solignac, J. L., Fundamental studies of vortex flows, Rech. Aéospat., 1984, 2, 1 (1984)
[16] Metwally, O.; Settles, G.; Horstman, C., An experimental study of shock wave/vortex interaction, AIAA Paper 89-0082 (1989)
[17] Cutler, A. D.; Levey, B. S., Vortex breakdown in a supersonic jet, AIAA Paper 91-1815 (1991)
[18] Rhodes, D. L.; Lilley, D. G.; McLaughlin, D. K., On the prediction of swirling flowfields found in axisymmetric combustor geometries, Trans. ASME, 104, 378 (1982)
[19] Altegeld, H.; Jones, W. P.; Wilhelmi, J., Velocity measurements in a confined swirl driven recirculating flow, (Experiments in Fluids, Vol. 1 (1983), Springer-Verlag: Springer-Verlag New York), 73-78
[20] Liu, C. H.; Krause, E.; Menne, S., Admissible upstream conditions for slender compressible vortices, AIAA Paper 86-1093 (1986)
[21] Copening, G.; Anderson, J., Numerical solutions to three-dimensional shock/vortex interaction at hypersonic speeds, AIAA Paper 89-0674 (1989)
[22] Kandil, O. A.; Kandil, H. A., Computation of compressible quasi-axisymmetric slender vortex flow and breakdown, (Computer Physics Communications, Vol. 65 (1991), North-Holland: North-Holland Amsterdam), 164-172 · Zbl 0900.76078
[23] Meadows, K.; Kumar, A.; Hussaini, M., A computational study on the interaction between a vortex and a shock wave, AIAA Paper 89-1043 (1989)
[24] Kandil, O. A.; Kandil, H. A.; Liu, C. H., Computation of steady and unsteady compressible quasi-axisymmetric vortex flow and breakdown, AIAA Paper 91-0752 (1991)
[25] Kandil, O. A.; Kandil, H. A.; Liu, C. H., Supersonic quasi-axisymmetric vortex breakdown, AIAA Paper 91-3311-CP, 851-863 (1991)
[26] Kandil, O. A.; Kandil, H. A.; Liu, C. H., Critical effects of downstream boundary conditions on vortex breakdown, AIAA Paper 92-2601-CP, 12-26 (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.