×

Zeta functions of prehomogeneous vector spaces with coefficients related to periods of automorphic forms. (English) Zbl 0799.11012

The purpose of this paper is to extend the range of zeta functions associated with prehomogeneous vector spaces. For an algebraic number field \(k\), we take a prehomogeneous vector space \((G_ k, V_ k)\) defined over \(k\). Roughly speaking, zeta functions associated with \((G_ k, V_ k)\) are obtained as a Dirichlet series whose coefficients are numbers of \(G_ k\)-orbits in \(V_ k\setminus S_ k\) (\(S_ k\) is a singular set of \((G_ k, V_ k)\)). However such definition excludes the cases related to the automorphic forms, for example Hecke’s \(L\)-function. In this paper, the author tries to reconstruct the old general theory so that we can deal with the zeta functions in a wider class including them. The author generalizes the theory of prehomogeneous vector spaces with symmetric structure of \(K_ \varepsilon\)-type and the functional equation of zeta functions attached to automorphic forms with generic infinitesimal character.
Reviewer: M.Muro (Yanagido)

MSC:

11F66 Langlands \(L\)-functions; one variable Dirichlet series and functional equations
11M41 Other Dirichlet series and zeta functions
14G10 Zeta functions and related questions in algebraic geometry (e.g., Birch-Swinnerton-Dyer conjecture)
14M17 Homogeneous spaces and generalizations
Full Text: DOI

References:

[1] van den Ban, E. P., Invariant differential operators on a semisimple symmetric space and finite multiplicities in a Plancherel formula, Ark. Mat., 25, 175-187 (1987) · Zbl 0645.43009 · doi:10.1007/BF02384442
[2] van den Ban, E. P., Asymptotic behaviour of matrix coefficients related to reductive symmetric spaces, Proc. K. Ned. Akad. Wet., A90, 225-249 (1987) · Zbl 0629.43008
[3] Bernstein, I. N.; Gelfand, S. I., Meromorphic properties of the functions, Pλ, Funct. Anal. Appl., 3, 68-69 (1969) · Zbl 0208.15201 · doi:10.1007/BF01078276
[4] Bopp, N.; Rubenthaler, H., Fonction zêta associée à la série principle sphérique de certaines espaces symétriques, C. R. Acad. Sci. Parist., 310, 505-508 (1990) · Zbl 0702.22015
[5] Borel, A., Density and maximality of arithmetic groups, J. Reine Angew. Math., 224, 78-89 (1966) · Zbl 0158.03105
[6] Borel, A.; Harish-Chandra, Arithmetic subgroups of algebraic groups, Ann. Math., 75, 485-535 (1962) · Zbl 0107.14804 · doi:10.2307/1970210
[7] Borel, A.; Jacquet, H., Automorphic forms and automorphic representations, Proc. Symp. pure Math., 33, 189-202 (1979) · Zbl 0414.22020
[8] Chernouso, V. V., On the Hasse principle for groups of type E_8, Sov. Math. Dokl., 39, 592-596 (1989) · Zbl 0703.20040
[9] Epstein, P., Zur Theorie allgemeiner Zetafunktionen, I, II, Math. Ann., 56, 615-644 (1903) · JFM 34.0461.02 · doi:10.1007/BF01444309
[10] Godement R and Jacquet H,Zeta functions of simple algebras, Lect. notes in Math. No.260, Springer-Verlag (1972) · Zbl 0244.12011
[11] Harish-Chandra,Automorphic forms on semisimple Lie groups, Lect. notes in Math. No. 68, Springer-Verlag (1968) · Zbl 0186.04702
[12] Hejhal, D., Some Dirichlet series with coefficients related to periods of automorphic eigen forms, Proc. Jpn Acad., 58, 413-417 (1982) · Zbl 0516.10018 · doi:10.3792/pjaa.58.413
[13] Hecke, E., Eine neue art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen, Erste Mitteilung, Math. Z., 1, 357-376 (1918) · JFM 46.0258.01 · doi:10.1007/BF01465095
[14] Hecke, E., Eine neue art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen, Math. Z., 6, 11-51 (1920) · JFM 47.0152.01 · doi:10.1007/BF01202991
[15] Helgason, S., Fundamental solutions of invariant differential operators on a symmetric space, Am. J. Math., 86, 565-601 (1964) · Zbl 0178.17001 · doi:10.2307/2373024
[16] Helgason, S., A duality for symmetric spaces with application to group representations II, Adv. Math., 22, 187-219 (1976) · Zbl 0351.53037 · doi:10.1016/0001-8708(76)90153-5
[17] Helgason S,Groups and geometric analysis, Academic Press, 1984 · Zbl 0543.58001
[18] Helgason, S., Some results on invariant differential operators on symmetric spaces, Am. J. Math., 114, 789-811 (1992) · Zbl 0838.43012 · doi:10.2307/2374798
[19] Katok S and Sarnak P, Heegner points, cycles and Maass forms. Preprint, 1990 · Zbl 0787.11016
[20] Kawai, T.; Kashiwara, M., On holonomic systems for Π_l=1^N(f_1 + √-10)^λ1, Publ. RIMS, Kyoto Univ., 15, 551-575 (1979) · Zbl 0449.35067
[21] Kottwitz, R. E., On Tamagawa numbers, Ann. Math., 127, 629-646 (1988) · Zbl 0678.22012 · doi:10.2307/2007007
[22] Maass, H., Spherical functions and quadratic forms, J. Ind. Math. Soc., 20, 117-162 (1956) · Zbl 0072.08401
[23] Maass, H., Zetafunktionen mit Größencharakteren und Kugelfunktionen, Math. Ann., 132, 1-32 (1957) · Zbl 0082.06601 · doi:10.1007/BF01342828
[24] Maass, H., Über die räumliche Verteilung der Punkte in Gittern mit indefiniter Metrik, Math. Ann., 138, 287-315 (1959) · Zbl 0089.06102 · doi:10.1007/BF01344150
[25] Maass H,Siegel’s modular forms and Dirichlet series, Letc. notes in Math. No. 216, Springer Verlag (1971) · Zbl 0224.10028
[26] Matsuki, T., The orbits of affine symmetric spaces under the action of minimal parabolic subgroups, J. Math. Soc. Jpn, 12, 307-320 (1982) · Zbl 0495.53049
[27] Ochiai H, A remark on invariant eigenfunctions on some exceptional noncompact Riemannian symmetric spaces. Preprint, 1990
[28] Oshima, T., Poisson transformations on affine symmetric spaces, Proc. Jpn Acad., 55, 323-327 (1979) · Zbl 0485.22011 · doi:10.2183/pjab.55.323
[29] Oshima, T.; Sekiguchi, J., Eigenspaces of invariant differential operators on an affine symmetric space, Invent. Math., 57, 1-81 (1980) · Zbl 0434.58020 · doi:10.1007/BF01389818
[30] Rossmann, W., Analysis on real hyperbolic spaces, J. Funct. Anal., 30, 448-477 (1978) · Zbl 0395.22014 · doi:10.1016/0022-1236(78)90065-4
[31] Rubenthaler H, Espaces préhomogenènes de type parabolique. Thèse, Université de Strasbourg, 1982 · Zbl 0561.17005
[32] Sabbah, C., Proximité évanescente II, Compos. Math., 64, 213-241 (1987) · Zbl 0632.32006
[33] Sato, F., Zeta functions in several variables associated with prehomogeneous vector spaces I, Functional equations, Tôhoku Math. J., 34, 437-483 (1982) · Zbl 0497.14007 · doi:10.2748/tmj/1178229205
[34] Sato, F., Zeta functions in several variables associated with prehomogeneous vector spaces, Tôhoku Math. J., 35, 77-99 (1983) · Zbl 0513.14011 · doi:10.2748/tmj/1178229103
[35] Sato, F., Zeta functions in several variables associated with prehomogeneous vector spaces, Ann. Math., 116, 177-212 (1982) · Zbl 0497.10012 · doi:10.2307/2007051
[36] Sato F, The Hamburger theorem for Epstein zeta functions,Algebraic Analysis, Vol. II, Academic Press (1989) 789-807 · Zbl 0673.10017
[37] Sato, F., On functional equations of zeta distributions, Adv. Studies in Pure Math., 15, 465-508 (1989) · Zbl 0714.11053
[38] Sato F, Zeta functions with polynomial coefficients associated with prehomogeneous vector spaces. Preprint, 1989 · Zbl 0874.11063
[39] Sato, F., The Maass zeta functions attached to positive definite quadratic forms, Adv. Studies in pure Math., 21, 409-443 (1992) · Zbl 0790.11042
[40] Sato, M., Theory of prehomogeneous vector spaces (Notes by T. Shintani in Japanese), Sugaku no Ayumi, 15-1, 85-157 (1970)
[41] Sato, M.; Kimura, T., A classification of irreducible prehomogeneous vector spaces and their invariants, Nagoya Math. J., 65, 1-155 (1977) · Zbl 0321.14030
[42] Sato, M.; Shintani, T., On zeta functions associated with prehomogeneous vector spaces, Ann. Math., 100, 131-170 (1974) · Zbl 0309.10014 · doi:10.2307/1970844
[43] Sekiguchi, J., Eigenspaces of the Laplace-Beltrami operator of a hyperboloid, Nagoya Math. J., 79, 151-185 (1980) · Zbl 0468.35074
[44] Shintani, T., On zeta functions associated with the vector space of quadratic forms, J. Fac. Sci. Univ. Tokyo, 22, 25-65 (1975) · Zbl 0313.10041
[45] Siegel, C., Advanced analytic number theory (1980), Bombay: Tata Institute of Fundamental Research, Bombay · Zbl 0478.10001
[46] Terras A,Harmonic analysis on symmetric spaces and applications II, Springer Verlag, 1985 · Zbl 0574.10029
[47] Vust, T., Opération de groupes réductifs dans un type de cône presque homogène, Bull. Soc. Math. France, 102, 317-334 (1974) · Zbl 0332.22018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.