×

Optimal homotopy methods for solving nonlinear systems. I: Nonsingular homotopy paths. (English) Zbl 0797.65045

The authors prove that in solving systems of nonlinear equations, a homotopy with a given structure has a distance monotone path under some regular conditions. The so-called local straighten-up method and global straighten-up method, as well as an adaptive step-size control strategy, are developed to approximate the optimal homotopy.

MSC:

65H10 Numerical computation of solutions to systems of equations
65H20 Global methods, including homotopy approaches to the numerical solution of nonlinear equations

References:

[1] Alexander, J.C., Yorke, J.A. (1978): The homotopy continuation method: numerically implementable topological procedures. Trans. Am. Math. Soc.243, 271-284 · Zbl 0424.58003 · doi:10.1090/S0002-9947-1978-0478138-5
[2] Allgower, E., Georg, K. (1980): Simplical and continuation methods for approximating fixed points and solution to systems of equations. SIAM Rev.22, 28-85 · Zbl 0432.65027 · doi:10.1137/1022003
[3] Brezzi, F., Rappaz, J., Raviant, P.A. (1981): Finite dimensional approximation of nonlinear problems. Part 3: Simple bifurcation points. Numer. Math.38, 1-30 · Zbl 0525.65037 · doi:10.1007/BF01395805
[4] Chow, S.N., Mallet-Paret, J., Yorke, J.A. (1978): Finding zeros of maps: homotopy methods that are constructive with probability one. Math. Comput.32, 887-899 · Zbl 0398.65029 · doi:10.1090/S0025-5718-1978-0492046-9
[5] Chu, M.T. (1984): A simple application of the homotopy method to symmetric eigenvalue problems. Linear Algebra Appl.59, 85-90 · Zbl 0544.65019 · doi:10.1016/0024-3795(84)90160-5
[6] Deuflhard, P., Pesch, H.J., Pentrop, P. (1978): A modified continuation method for the numerical solution of nonlinear two-point boundary value problems by shooting techniques. Numer. Math.26, 327-343 · Zbl 0335.65033 · doi:10.1007/BF01395950
[7] Garcia, C.B., Gould, F.J. (1978): A theorem on the homotopy paths. Math. Oper. Res.3, 283-389 · Zbl 0396.65025 · doi:10.1287/moor.3.4.282
[8] Jepson, A.D., Keller, H.P. (1984): Steady state and periodic solution paths: their bifurcation and computation. In: T. Küpper, H.D. Mittelmann, H. Weber, eds., Numerical methods for bifurcation problems, ISNM 70, pp. 219-246, Birkhauser, Basel · Zbl 0579.65057
[9] Kalaba, R., Tesfatsion, L. (1991): Solving nonlinear equations by adaptive homotopy continuation. Appl. Math. Comput.41, 99-115 · Zbl 0717.65031 · doi:10.1016/0096-3003(91)90064-T
[10] Keller, H.B. (1977): Numerical solution of bifurcation and nonlinear eigenvalue problems. In: P.H. Rabonowitz ed., Application of bifurcation theory. pp. 359-384, Academic Press, New York
[11] Kellogg, R.B., Li, T.Y., Yorke, J. (1976): A constructive proof of the Brouwer fixed point theorem and computational results. SIAM J. Numer. Anal.4, 473-483 · Zbl 0355.65037 · doi:10.1137/0713041
[12] Krasnoselskii, M.A., Zabeiko, P.P. (1984): Geometrical Methods of Nonlinear Analysis. Springer, Berlin Heidelberg New York
[13] Li, T.Y., Sauer, T. (1987): Homotopy methods for generalized eigenvalue problems. Linear Algebra Appl.91, 65-74 · Zbl 0621.65028 · doi:10.1016/0024-3795(87)90060-7
[14] Moore, G. (1980): The numerical treatment of nontrivial bifurcation points, Numer. Funct. Anal. Optimization2, 441-472 · Zbl 0459.65040 · doi:10.1080/01630568008816070
[15] Ortega, J.M. (1968): The Newton-Kantorovich theorem. Am. Math. Mon.75, 658-660 · Zbl 0183.43004 · doi:10.2307/2313800
[16] Rheinboldt, W.C. (1968): A unified convergence theory for a class of iteration procedures. SIAM J. Numer. Anal.5, 42-63 · Zbl 0155.46701 · doi:10.1137/0705003
[17] Rheinboldt, W.C. (1980): Solution fields of nonlinear equations and continuation methods. SIAM J. Numer. Anal.17, 221-237 · Zbl 0431.65035 · doi:10.1137/0717020
[18] Seydel, R. (1984): Numerical computation of periodic orbits that bifurcate from stationary solution of ODEs. Appl. Math. Comput.9, 257-271 · Zbl 0491.65049 · doi:10.1016/0096-3003(81)90016-3
[19] Watson, L.T., Soff, M.R. (1987): Solving spline-collocation approximation to nonlinear two-point boundary value problems by a homotopy method. Appl. Math. Comput.24, 333-357 · Zbl 0635.65099 · doi:10.1016/0096-3003(87)90015-4
[20] Werner, B., Spence, A. (1984): The computation of symmetry-breaking bifurcation points. SIAM. J. Numer. Anal.21, 388-399 · Zbl 0554.65045 · doi:10.1137/0721029
[21] Wilkinson, J.H. (1965): The Algebraic Eigenvalue Problem. Oxiford University Press, London and New York · Zbl 0258.65037
[22] Zhang, L.-Q. (1992): Spline collocation approximation to periodic solutions of ODEs. J. Comput. Math.10, (2) 147-154 · Zbl 0776.65051
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.