×

A mountain pass method for the numerical solution of semilinear wave equations. (English) Zbl 0796.65109

The authors study periodic solutions of the semilinear vibrating string model equation \(u_{tt} - u_{xx} + au^ + -bu^ - = -\sin (\pi x) [1-\gamma \sin (2 \pi t)]\), \(u(0,t) = u(1,t) = 0\), \(u(x,t+1) = u(x,t)\) (here \(u^ + = {1 \over 2} (| u | + u)\), \(u^ - = {1 \over 2} (| u | - u)\). The problem is reformulated as a dual variational problem in such a way that the obvious solution obtained as a solution of the linear problem, is a local minimum. Then additional non-obvious solutions can be found by using a numerical mountain pass algorithm. Three test calculations illustrate the method.
Reviewer: O.Titow (Berlin)

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
74K05 Strings
35L70 Second-order nonlinear hyperbolic equations

References:

[1] Adams, R.A. (1975): Sobolev Spaces. Academic Press
[2] Ambrosetti, A., Rabinowitz, P.H. (1973): Dual variational methods in critical point theory and applications. J. Funct. Anal.14, 349-381 · Zbl 0273.49063 · doi:10.1016/0022-1236(73)90051-7
[3] Birkhoff, G., Lynch, R.E. (1984): Numerical Solution of Elliptic Problems. SIAM, Philadelphia
[4] Burden, R.L., Faires, J.D. (1989): Numerical Analysis. PWS-Kent, Boston · Zbl 0671.65001
[5] Brezis, H.: Periodic solutions of nonlinear vibrating strings. Proceeding AMS symposium on the mathematical heritage of H. Poincare. April, 1980
[6] Brezis, H., Nirenberg, L. (1978): Forced vibrations for a nonlinear wave equation. Comm. Pure Appl. Math.31, 1-30 · Zbl 0378.35040 · doi:10.1002/cpa.3160310102
[7] Brezis, H., Coron, J.M., Nirenberg, L. (1980): Free vibrations for a nonlinear wave equation and a theorem of P. Rabinowitz. Comm. Pure Appl. Math.33 667-689 · Zbl 0484.35057 · doi:10.1002/cpa.3160330507
[8] Clarke, F.H., Ekeland, I. (1980): Hamiltonian trajectories having prescribed minimial period. Comm. Pure Appl. Math.33, 103-116 · doi:10.1002/cpa.3160330202
[9] Choi, Y.S., McKenna, P.J.: A mountain pass method for the numerical solutions of semilinear elliptic problems. Nonlinear Anal. Theory Methods Appl. (in press) · Zbl 0779.35032
[10] Coron, J.M. (1983): Periodic solutions of a nonlinear wave equation without assumptions of amonotonicity. Math. Ann.262, 273-285 · Zbl 0489.35061 · doi:10.1007/BF01455317
[11] Defigueiredo, D.G. (1989): The Ekeland variational principle with applications and detours. Tata Lecture. Springer Berlin Heidelberg New York.
[12] Gilbarg, D., Trudinger, N.S. (1983): Elliptic Partial Differential Equations of Second Order., Springer. Berlin Heidelberg New York · Zbl 0562.35001
[13] Lazer, A.C., McKenna, P.J. (1988): A symmetry theorem and applications to nonlinear partial differential equations J. Dif. Equations72, 95-106 · Zbl 0666.47038 · doi:10.1016/0022-0396(88)90150-7
[14] Lazer, A.C., McKenna, P.J. (1985): Some multiplicity results for a class of semilinear elliptic and parabolic boundary value problems. J. Math. Anal. Appl.107, 371-395 · Zbl 0584.35053 · doi:10.1016/0022-247X(85)90320-8
[15] Lazer, A.C., McKenna, P.J. (1986): Critical point theory and boundary value problems with nonlinearities crossing multiple eigenvalues II. Comm. P.D.E.11, 1653-1676 · Zbl 0654.35082 · doi:10.1080/03605308608820479
[16] Mawhin, J., Willem, M. (1989): Critical Point Theory and Hamiltonian Systems. Springer Berlin Heidelberg New York · Zbl 0676.58017
[17] McKenna, P.J., Walter, W. (1987): Nonlinear oscillations in a suspension bridge. Arch. Rat. Mech. Anal.98, 167-177 · Zbl 0676.35003 · doi:10.1007/BF00251232
[18] McKenna, P.J., Walter, W. (1984): On the multiplicity of the solution set of some nonlinear boundary value problems. Nonlinear Anal. Theory Methods Appl.8, 893-907 · Zbl 0556.35024 · doi:10.1016/0362-546X(84)90110-X
[19] Rabinowitz, P.H. (1986): Minimax methods in critical point theory with applications to differential equations. Reg. Conf. Ser. Math.65, 1-44 · Zbl 0609.58002
[20] Rabinowitz, P.H. (1978): Periodic solutions of Hamiltonian systems. Comm. Pure Appl. Math.31, 157-184 · doi:10.1002/cpa.3160310203
[21] Rabinowitz, P.H. (1978): Free vibrations for a semilinear wave equation. Comm. Pure Appl. Math.31, 31-68 · Zbl 0341.35051 · doi:10.1002/cpa.3160310103
[22] Romano, M.: A numerical method for the mountain pass lemma. (to appear)
[23] Strang, G. (1986): Introduction to Applied Mathematics, Wellesley Press, Cambridge
[24] Strang, G., Fix, G. (1973): An Analysis of the Finite Element Method. Prentice-Hall, Englewoodcliffs, NJ · Zbl 0356.65096
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.