×

Prescription of measures on functional spaces by means of numerical densities and path integrals. (English. Russian original) Zbl 0795.60003

Math. Notes 53, No. 5, 555-557 (1993); translation from Mat. Zametki 53, No. 5, 152-155 (1993).
Let us consider a separable real Hilbert space \(H\). We choose an orthonormal basis \(h_ 1\), \(h_ 2,\dots,\) in it, denote the linear hull of the vectors \(h_ 1,\dots,h_ n\) by \(H_ n\), and set \(H_ 0=\bigcup^ \infty_{n=1} H_ n\). We suppose that a bounded positive function \(F\), whose restriction to each space \(H_ n\) is measurable, is defined on \(H_ 0\). For each \(p \in H_ 0\) we compute \[ \chi(p)=c_ n^{-1} \int_{\mathbb{R}^ n} e^{i \sum^ n_{k=1} x_ k (p,h_ k)} F \left( \sum^ n_{k=1} x_ kh_ k \right) dx_ 1\dots dx_ n, \] where \[ c_ n=\int_{\mathbb{R}_ n} F \left( \sum^ n_{k=1} x_ kh_ k \right) dx_ 1 \dots dx_ n. \] We assume that there exists an increasing sequence of natural numbers \(n_ 1\), \(n_ 2,\dots,\) such that \(\exists \chi (p)=\lim \chi_{n_ k} (p)\) exists \(\forall p \in H_ 0\) and a probability measure \(\mu\) with the characteristic function \(\chi\) exists on a certain completion of the space \(H_ 0\). We call the function \(F\) the density of the measure \(\mu\). We formulate sufficient conditions under which a function \(F\) is the density of a certain measure \(\mu\) and describe properties of this measure. We also discuss the problem about the class of the measures that have a density and the uniqueness problem.

MSC:

60B05 Probability measures on topological spaces
60A10 Probabilistic measure theory
Full Text: DOI

References:

[1] I. M. Gel’fand and A. M. Yaglom, Usp. Mat. Nauk,11, No. 1, 77-114 (1956).
[2] A. N. Vasil’ev, Functional Methods in Quantum Field Theory and Statistics [in Russian], Leningrad Univ. (1976).
[3] R. L. Dobrushin, Funkts. Anal. Prilozhen.,3, No. 1, 27-35 (1969).
[4] Ya. G. Sinai, Theory of Phase Transitions. Strong Results [in Russian], Nauka, Moscow (1980).
[5] V. Ya. Malyshev and R. A. Minlos, Gibbs Random Fields. The Method of Cluster Decompositions [in Russian], Nauka, Moscow (1985). · Zbl 0584.60062
[6] B. Jessen, Acta Math.,63, 249-323 (1934). · Zbl 0010.20004 · doi:10.1007/BF02547355
[7] R. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill, New York (1965). · Zbl 0176.54902
[8] M. Kac, Probability and Related Topics in Physical Sciences, Am. Math. Soc., Providence (1959). · Zbl 0087.33003
[9] R. Henstock, Proc. London Math. Soc.,27, No. 2, 317-344 (1973). · Zbl 0263.28007 · doi:10.1112/plms/s3-27.2.317
[10] S. Kawabata, Osaka J. Math.,23, No. 1, 55-67 (1986).
[11] O. G. Smolyanov and E. T. Shavgulidze, Path Integrals [in Russian], Moscow Univ. (1990).
[12] A. V. Skorokhood, Integration in a Hilbert Space [in Russian], Nauka, Moscow (1975).
[13] A. I. Kirillov, Teor. Mat. Fiz.,93, No. 2, 249-263 (1992).
[14] Yu. L. Deletskii and S. V. Fomin, Measures and Differential Equations in Infinite-Dimensional Spaces [in Russian], Nauka, Moscow (1983).
[15] V. I. Bogachev and O. G. Smolyanov, Usp. Mat. Nauk,45, No. 3, 3-83 (1990).
[16] V. I. Avberbukh, O. G. Smolyanov, and S. V. Fomin, Trudy Mosk. Mat. Obshch.,24, 133-174 (1971).
[17] V. I. Bogachev, Mat. Sb.,127, No. 3, 336-351 (1985).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.