×

Two sheeted discs and bounded analytic functions. (English) Zbl 0795.30029

The authors continue their investigations on bounded analytic functions on two sheeted discs [Pac. J. Math. 134, No. 2, 261-273 (1988; Zbl 0627.30031); Constructive Approximation 6, No. 2, 195-223 (1990; Zbl 0698.30036); Trans. Am. Math. Soc. 333, No. 2, 799-819 (1992; Zbl 0759.30019)].
Let \(D\subset\Omega\) be a subdomain of the unit disc \(\Delta\) and let \(\widetilde D\) be a two sheeted unlimited covering surface of \(D\) with projection map \(\pi: \widetilde D\to D\). The authors investigate the Myrberg phenomenon i.e. the validity of \[ H^ \infty(\widetilde D)= H^ \infty(D)\circ \pi\tag{1} \] for certain coverings \((\widetilde D,D,\pi)\). Here \(H^ \infty(D)\) is the space of bounded analytic functions on \(D\). For \(D=\Delta\) and \(\{z_ n\}\) the set of branch points of \(\widetilde D\), Selberg proved (1937) that (1) is true iff \[ \sum_{n\geq 1} (1- | z_ n|)= \infty.\tag{2} \] Let now be \(\{z_ n\}\subset\Delta\) be a set without accumulation point in \(\Delta\) which satisfies (2) (admissible set). A sequence \(\{\Delta_ n\}\) of closed discs centered at \(\{z_ n\}\) is called an admissible sequence if the \(\{\Delta_ n\}\) are disjoint and contained in \(\Delta\). If \((\widetilde\Delta,\Delta,\pi)\) is the two sheeted covering surface with is branched over \(\{z_ n\}\), let \(D:= \Delta\backslash\bigcap_{n\geq 1}\Delta_ n\) and \(\widetilde D:= \pi^{-1}(D)\). The main theorem (in qualitative form):
For any admissible set \(\{z_ n\}\) there exists a sequence \(\{\bar r_ n\}\) of positive numbers such that any associated admissible sequence \(\{\Delta_ n\}\) of discs with radii \(0< r_ n\leq \bar r_ n\) leads to a covering surface \((\widetilde D,D,\pi)\) with property (1).
The very interesting quantitative form of the theorem is too complicated to be stated here.

MSC:

30D50 Blaschke products, etc. (MSC2000)
30F20 Classification theory of Riemann surfaces
30F99 Riemann surfaces
Full Text: DOI

References:

[1] Fisher, S., Function Theory of Planar Domains (1983), New York: Wiley, New York · Zbl 0511.30022
[2] Forelli, F., A note on divisibility in H^∞(X), Canad. J. Math., 38, 458-469 (1984) · Zbl 0567.30023
[3] Garnett, J., Bounded, Analytic Functions (1981), New York: Academic Press, New York · Zbl 0469.30024
[4] Hayashi, M.; Nakai, M., Point separation by bounded analytic functions of a covering Riemann surface, Pacifie J. Math., 134, 261-273 (1988) · Zbl 0627.30031
[5] M. Hayashi and M. Nakai,On the Myrberg type phenomenon, inAnalytic Function, Theory of One Complex Variable, C. C. Yang, Y. Komatu and K. Niino, eds., Pitman Research Notes in Mathematics Series, Vol. 212, Longman Scientific, & Technical, 1989, pp. 1-12. · Zbl 0698.30036
[6] Hayashi, M.; Nakai, M.; Segawa, S., Bounded analytic functions on two sheeted discs, Trans. Amer. Math. Soc., 333, 799-819 (1992) · Zbl 0759.30018 · doi:10.2307/2154063
[7] Myrberg, P. J., Über die Analytische Fortsetzung von beschränkten Funktionen, Ann. Acad. Sci. Fenn., Ser. A, 58, 1-7 (1949) · Zbl 0034.05203
[8] Royden, H. L., Algebras of bounded analytic functions on Riemann surfaces, Acta Math., 114, 113-142 (1965) · Zbl 0146.30501 · doi:10.1007/BF02391819
[9] Sario, L.; Nakai, M., Classification Theory of Riemann Surfaces (1970), Berlin: Springer-Verlag, Berlin · Zbl 0199.40603
[10] Segawa, S., Bounded analytic functions on unbounded covering surfaces, Pacific J. Math., 79, 183-187 (1978) · Zbl 0405.30036
[11] Selberg, H. L., Ein Satz über beschränkte endlichvieldeutige analytische Funktionen, Comm. Math. Helv., 9, 104-108 (1937) · Zbl 0015.30805 · doi:10.1007/BF01258178
[12] Stanton, C. M., Bounded analytic functions on a class of Riemann surfaces, Pacific J. Math., 59, 557-565 (1975) · Zbl 0328.30040
[13] M. Tsuji,Potential Theory in Modern Function Theory, Chelsea, 1975. · Zbl 0322.30001
[14] Yamamura, Y., On the existence of bounded analytic functions, Sci. Rep. Tokyo Kyoiku Daigaku, Sect. A, 10, 88-102 (1969) · Zbl 0175.36302
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.