×

An algorithm for calculating characters of Hecke algebras \(H_ n(q)\) of type \(A_{n-1}\) when \(q\) is a root of unity. (English) Zbl 0795.20024

Recently, a Frobenius character formula was found for the characters \(\varphi_ \rho^ \sigma(q)\) of the irreducible representations \(\pi_{[\sigma]}\) of the Hecke algebra \(H_ n(q)\) (of type \(A_{n-1}\)) labelled by \((m,k)\)-standard partitions \(\sigma\), where \(q\) is a primitive \(p\)th root of unity with \(p=m+k\) [see the preceding review, Zbl 0795.20023]. Here, this result is used to derive a combinatorial procedure for calculating these characters. This procedure generalizes that of Murnaghan and Nakayama for characters of \(S_ n\), and a more recent one for characters of \(H_ n(q)\) for generic \(q\).

MSC:

20G05 Representation theory for linear algebraic groups
05E10 Combinatorial aspects of representation theory
20C30 Representations of finite symmetric groups
20C05 Group rings of finite groups and their modules (group-theoretic aspects)

Citations:

Zbl 0795.20023
Full Text: DOI

References:

[1] Carter R.W., J Algebra 104 pp 89– (1986) · Zbl 0624.20007 · doi:10.1016/0021-8693(86)90238-3
[2] Cummins C.J., J Phys A: Math Gen 24 pp 391– (1990) · Zbl 0727.17016 · doi:10.1088/0305-4470/24/2/012
[3] Cummins C.J., J Phys A: Math Gen 25 pp L789– (1992) · Zbl 0781.05055 · doi:10.1088/0305-4470/25/13/006
[4] Cummins C.J., Communications in Algebra 21 pp 4397– (1993) · Zbl 0795.20023 · doi:10.1080/00927879308824806
[5] Fuchs J., Nucl Phys B 294 pp 30– (1987) · doi:10.1016/0550-3213(87)90571-2
[6] Goodman F.M., Adv in Math 82 pp 244– (1990) · Zbl 0714.20004 · doi:10.1016/0001-8708(90)90090-A
[7] Goodman F.M., Letters B 262 pp 259– (1991) · doi:10.1016/0370-2693(91)91563-B
[8] Kac, V. Primary fields, fusion rules and homological algebra. Presented at the Can Math Soc Seminar on Lie theory, differential equations and representation theory. CRM, Université de Montréal. Unpublished
[9] Kerov S.V., J Sov Math 46 pp 2148– (1989) · Zbl 0716.20007 · doi:10.1007/BF01096099
[10] King R.C., Phys A: Math Gen 23 pp L1193– (1990) · doi:10.1088/0305-4470/23/23/001
[11] King R.C., J Math Phys 33 pp 4– (1992) · Zbl 0752.05058 · doi:10.1063/1.529925
[12] Macdonald I., Symmetric functions and Hall polynomials (1979) · Zbl 0487.20007
[13] Ram A., Invent Math 106 pp 461– (1991) · Zbl 0758.05099 · doi:10.1007/BF01243921
[14] Robinson G de B., Representation Theory of the Symmetric Group (1961) · Zbl 0102.02002
[15] Van der Jeugt J., J Phys A 24 pp 3719– (1991) · Zbl 0763.20005 · doi:10.1088/0305-4470/24/15/038
[16] Verlinde E., Nucl Phys 300 pp 360– (1988) · Zbl 1180.81120 · doi:10.1016/0550-3213(88)90603-7
[17] Vershik A.M., Soviet Math Dokl 38 pp 134– (1989)
[18] Wenzl H., Invent Math 128 pp 349– (1988) · Zbl 0663.46055 · doi:10.1007/BF01404457
[19] Walton M., Phys Lett B 241 pp 365– (1990) · doi:10.1016/0370-2693(90)91657-W
[20] Walton M., Nucl Phys B 340 pp 777– (1990) · doi:10.1016/0550-3213(90)90470-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.