×

Interpolation between sequence transformations. (English) Zbl 0794.65004

It was found recently that Levin’s transformation fails completely in convergence acceleration and summation processes, in the case of the strongly divergent Rayleigh-Schrödinger and renormalized perturbation expansions for the ground state energies of anharmonic oscillators, whereas the structurally very similar sequence transformation gives very good results.
For a more detailed investigation of these phenomena, a sequence transformation is constructed which, depending on a continuous parameter, is able to interpolate between Levin’s transformation and the other sequence transformation. Some numerical examples, which illustrate the properties of the interpolating sequence transformation, are presented.

MSC:

65B05 Extrapolation to the limit, deferred corrections

Software:

HURRY; Maple
Full Text: DOI

References:

[1] D. Levin, Development of non-linear transformations for improving convergence of sequences, Int. J. Comput. Math. B 3 (1973) 371–388. · Zbl 0274.65004 · doi:10.1080/00207167308803075
[2] D.A. Smith and W.F. Ford, Acceleration of linear and logarithmic convergence, SIAM J. Numer. Anal. 16 (1979) 223–240. · Zbl 0407.65002 · doi:10.1137/0716017
[3] D.A. Smith and W.F. Ford, Numerical comparisons of nonlinear convergence accelerators, Math. Comput. 38 (1982) 481–499. · Zbl 0487.65004 · doi:10.1090/S0025-5718-1982-0645665-1
[4] E.J. Weniger, Nonlinear sequence transformations for the acceleration of convergence and the summation of divergent series, Comput. Phys. Rep. 10 (1989) 189–371. · doi:10.1016/0167-7977(89)90011-7
[5] I.M. Longman, Difficulties of convergence acceleration, in:Padé Approximation and Its Applications Amsterdam 1980, eds. M.G. de Bruin and H. van Rossum (Springer, Berlin, 1981) pp. 273–289.
[6] T. Fessler, W.F. Ford, and D.A. Smith, HURRY: An acceleration algorithm for scalar sequences and series, ACM Trans. Math. Software 9 (1983) 346–354. · Zbl 0517.65003 · doi:10.1145/356044.356051
[7] A. Sidi, Convergence properties of some nonlinear sequence transformations, Math. Comput. 33 (1979) 315–326. · Zbl 0401.41020 · doi:10.1090/S0025-5718-1979-0514827-6
[8] A. Sidi, A new method for deriving Padé approximants for some hypergeometric functions, J. Comput. Appl. Math. 7 (1981) 37–40. · Zbl 0452.41010 · doi:10.1016/0771-050X(81)90006-1
[9] R. Shelef, New numerical quadature formulas for Laplace transform inversion by Bromwich’s integral (in Hebrew), Master Thesis, Technion, Israel Institute of Technology, Haifa (1987).
[10] B. Germain-Bonne, Transformations de suites, Rev. Française Automat. Informat. Rech. Operat. 7 (R-1) (1973) 84–90. · Zbl 0279.65002
[11] E.J. Weniger and E.O. Steinborn, Nonlinear sequence transformations for the efficient evaluation of auxiliary functions for GTO molecular integrals, in:Numerical Determination of the Electronic Structure of Atoms, Diatomic and Polyatomic Molecules, eds. M. Defranceschi and J. Delhalle (Kluwer, Dordrecht, 1989) pp. 341–346.
[12] E.J. Weniger and J. Čížek, Rational approximations for the modified Bessel function of the second kind, Comput. Phys. Commun. 59 (1990) 471–493. · Zbl 0875.65036 · doi:10.1016/0010-4655(90)90089-J
[13] E.J. Weniger, On the summation of some divergent hypergeometric series and related perturbation expansions, J. Comput. Appl. Math. 32 (1990) 291–300. · Zbl 0739.33005 · doi:10.1016/0377-0427(90)90439-7
[14] E.J. Weniger, J. Čížek and F. Vinette, Very accurate summation for the infinite coupling limit of the perturbation series expansions of anharmonic oscillators, Phys. Lett. A 156 (1991) 169–174. · doi:10.1016/0375-9601(91)90931-W
[15] J. Grotendorst, A Maple package for transforming series, sequences and functions, Comput. Phys. Commun. 67 (1991), 325–342. · Zbl 0875.65007 · doi:10.1016/0010-4655(91)90026-H
[16] J. Čížek, F. Vinette and E.J. Weniger, Symbolic computation in physics and chemistry: Applications of the inner projection technique and of a new summation method for divergent series, Int. J. Quantum Chem. Symp. 25 (1991) 209–223.
[17] E.J. Weniger, J. Čížek and F. Vinette, The summation of the ordinary and renormalized perturbation series for the ground state energy of the quartic, sextic, and octic anharmonic oscillators using nonlinear sequence transformations, J. Math. Phys., submitted. · Zbl 0794.34045
[18] C.M. Bender and T.T. Wu, Large-order behavior of perturbation theory, Phys. Rev. Lett. 27 (1971) 461–465. · doi:10.1103/PhysRevLett.27.461
[19] F. Vinette and J. Čížek, Upper and lower bounds of the ground state energy of anharmonic oscillators using renormalized inner projection, J. Math. Phys. 32 (1991) 3392–3404. · doi:10.1063/1.529452
[20] B.W. Char, K.O. Geddes, G.H. Gonnet, B.L. Leong, M.B. Monagan and S.M. Watt,Maple V Language Reference Manual (Springer, Berlin, 1991).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.