×

Invariance principles for random walks on hypergroups on \(\mathbb{R}_ +\) and \(\mathbb{N}\). (English) Zbl 0793.60006

Summary: Let \((X_ n:n\in\mathbb{N})\) be i.i.d. with finite variance and values in a hypergroup \(K:=\mathbb{R}_ +\) or \(\mathbb{N}\) and \(\Lambda\sum^ n_{j=1}X_ j\) be the randomized sum of these random variables. It is shown that the processes \((\Lambda\sum^{\lfloor nt\rfloor}_{j=1}(X_ j/\sqrt n):t\geq 0)\) converge in distribution to a Gaussian process in the case \(K=\mathbb{R}_ +\), that the processes \((1/\sqrt n\cdot\Lambda\sum^{\lfloor nt\rfloor}_{j=1}X_ j:t\geq 0)\) converge towards a Bessel process on \(\mathbb{R}_ +\) in the case of polynomial growth of the hypergroup \(K=\mathbb{R}_ +\) or \(\mathbb{N}\), and that in the case of exponential growth \((1/ \sqrt n \cdot (\Lambda \sum^{\lfloor nt \rfloor}_{j=1}X_ j- \lfloor nt \rfloor E_ *(X_ 1)):t \geq 0)\) converges towards a Brownian motion as \(n \to \infty\).

MSC:

60B15 Probability measures on groups or semigroups, Fourier transforms, factorization
Full Text: DOI

References:

[1] Aldous, D. (1978). Stopping times and tightness,Ann. Prob. 6, 335–340. · Zbl 0391.60007 · doi:10.1214/aop/1176995579
[2] Bloom, W., and Heyer, H. (1982). The Fourier transform for probability measures on hypergroups,Rend. Math., Ser. VII2, 315–334. · Zbl 0501.60016
[3] Bouhaik, M., and Gallardo, L. (1992). Un théorème limite centrale dans un hypergroupe bidimensional,Ann. Inst. Poincaré 28, 47–61. · Zbl 0748.60025
[4] Eymard, P., and Roynette, B. (1975). Marches aléatoires sur le dual de SU(2), Analyse harmonique sur les groupes de Lie. Proceedings 1973–1975. P. Eymard (ed.),Lecture Notes in Mathematics, Springer Verlag, Berlin, Heidelberg, New York, Tokyo, pp. 108–152.
[5] Finckh, U. (1986). Beiträge zur Wahrscheinlichkeitstheorie auf einer Kingman-Struktur, Dissertation, Tübingen. · Zbl 0624.60011
[6] Gallardo, L. (1984). Comportement asymptotique des marches aléatoires associées aux polynômes de Gegenbauer et applications,Adv. Appl. Prob. 16, 293–323. · Zbl 0542.60071 · doi:10.2307/1427071
[7] Gihman, I. I., and Shorohod, A. V. (1974).The Theory of Stochastic Processes I, Springer Verlag, Heidelberg, New York.
[8] Heyer, H. (1979).Einführung in die Theorie Markoffscher Prozesse, Bibliographisches Institut, Mannheim, Wien, Zürich. · Zbl 0412.60073
[9] Jewett, R. I. (1975). Spaces with an abstract convolution of measures,Adv. Math. 18, 1–101. · Zbl 0325.42017 · doi:10.1016/0001-8708(75)90002-X
[10] Karlin, S., and Taylor, H. (1981).A Second Course in Stochastic Processes, Academic Press, New York, London, Toronto, Sydney, San Francisco. · Zbl 0469.60001
[11] Karpelevich, F. I., Tutubalin, V. N., and Shur, M. G. (1959). Limit theorems for the compositions of distributions in the Lobachevsky plane and space.Th. Prob. Appl. 4, 399–402. · Zbl 0107.35603 · doi:10.1137/1104039
[12] Kingman, J. F. C. (1963). Random walks with spherical symmetry,Acta Math. 109, 11–53. · Zbl 0121.12803 · doi:10.1007/BF02391808
[13] Lasser, R. (1983). Orthogonal polynomials and hypergroups,Rend. Mat. Ser. VIII 3, 185–209. · Zbl 0538.33010
[14] Lasser, R., and Rösler, M. (1992).A Note on Property (T) of Orthogonal Polynomials. · Zbl 0781.33005
[15] Mabrouki, M. (1984). Principe d’invariance et théorèmes limites pour les chaînes de Markov liées à des polynômes orthogonaux, Thèse de doctorat de 3c cycle, Université de Nancy.
[16] Mabrouki, M. (1984). Principe d’invariance pour les marches aléatoires associées aux polynômes de Gegenbauer et applications,C. R. Acad. Sc. Paris, Série I299(19), 991–994. · Zbl 0597.60062
[17] Pitman, J., and Yor, M. (1980). Bessel processes and infinitely divisible laws, Stochastic integrals.Proceedings LMS Durham Symposium, Lecture Notes in Mathematics, Springer Verlag, Berlin, Heidelberg, New York, Tokyo851, 285–370.
[18] Pollard, D. (1984).Convergence of Stochastic Processes, Springer Verlag, New York, Berlin, Heidelberg, Tokyo. · Zbl 0544.60045
[19] Trimèche, K. (1978). Probabilités indéfiniment divisibles et théorème de la limite centrale pour une convolution généralisée sur la demi-droite,C. R. Acad. Sc. Paris, Série A286, 63–66.
[20] Trimèche, K. (1991). Opérateurs de permutation et théorème de la [limite] centrale associés à des opérateurs aux derivées partielles,Probability Measures on Groups X, H. Heyer (ed.), Plenum Press, New York, London, pp. 397–424.
[21] Voit, M. (1990a). Central limit theorems for a class of polynomial hypergroups,Adv. Appl. Prob. 22, 68–87. · Zbl 0719.60009 · doi:10.2307/1427597
[22] Voit, M. (1990b). Central limit theorems for random walks on \(\mathbb{N}\)0 that are associated with orthogonal polynomials,J. Multiv. Anal. 34, 290–322. · Zbl 0722.60021 · doi:10.1016/0047-259X(90)90041-F
[23] Vrem, R. C. (1979). Harmonic analysis on compact hypergroups,Pac. J. Math. 85, 239–251. · Zbl 0458.43002
[24] Zeuner, Hm. (1989a). One-dimensional hypergroups,Adv. Math. 76, (1), 1–18. · Zbl 0677.43003 · doi:10.1016/0001-8708(89)90041-8
[25] Zeuner, Hm. (1989b). The central limit theorem for Chébli-Trimèche hypergroups,J. Th. Prob. 2, 51–63. · Zbl 0679.60012 · doi:10.1007/BF01048268
[26] Zeuner, Hm. (1992). Moment functions and laws of large numbers on hypergroups,Math. Z. 211, 369–407. · Zbl 0759.43003 · doi:10.1007/BF02571436
[27] Zeuner, Hm. Lindenberg type central limit theorems on one dimensional hypergroups (to appear). · Zbl 1295.60022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.