×

Geometry of bi-Hamiltonian systems. (Géométrie des systèmes bihamiltoniens.) (French) Zbl 0793.58015

It is well known that the various notions of compatibility between geometrical structures play a very important role in differential geometry. For instance, the compatibility between complex structures and Riemannian structures lead us naturally to the Kähler geometry. The compatibility between Riemannian structures and foliated structures determines the study of Riemannian foliations and so on.
In the paper under review the authors prove that the compatibility of two symplectic structures gives rise to a very rich geometry which contains as particular cases some old results due to Darboux and Lie.
The material is organized as follows. In §1 are described the nondegenerate bi-Hamiltonian mechanical systems which are situated in a neighborhood of an invariant torus. The bi-Lagrangian fibrations make the object of the following two sections. Finally in the last section all the above results are exemplified in the particular case of a 4-dimensional compact manifold, connected and without boundary.

MSC:

37J99 Dynamical aspects of finite-dimensional Hamiltonian and Lagrangian systems
Full Text: DOI

References:

[1] Abraham, R.; Marsden, J., Foundations of Mechanics (1978), Benjamin: Benjamin NY · Zbl 0393.70001
[2] Adams, M. R.; Harnad, J.; Previato, E., Isospectral hamiltonian flows in finite and infinite dimensions, polycopié (1987) · Zbl 0659.58022
[3] Adler, M.; van Moerbeke, P., Completely integrable systems, euclidian Lie algebras and curves, Adv. in Math., 38, 267-317 (1980) · Zbl 0455.58017
[4] Antonowicz, M.; Fordy, A.; Wojciexhowski, S., Integrable stationary flows: Miura map and bihamiltonian structures (1987), preprint
[5] Arnold, V. - Méthodes mathématiques de la mécanique classique, Ed. Mir - Moscou.; Arnold, V. - Méthodes mathématiques de la mécanique classique, Ed. Mir - Moscou.
[6] Atiyah, M., Convexity and commuting hamiltonians, Bull. Lond. Math. Soc., 14, 1-15 (1982) · Zbl 0482.58013
[7] Boucetta, M.; Molino, P., Géométrie globale des systémes hamiltoniens complétement intégrables: fibrations Lagrangiennes singuliéres et coordonnées action-angle á singularités, C.R.Ac.Sc. Paris, 308-I, 421-424 (1989) · Zbl 0702.58032
[8] Brouzet, R., Systémes bihamiltoniens et compléte intégrabilité en dimension 4, C.R.Ac.Sc. Paris, 311-I, 895-898 (1990) · Zbl 0713.70012
[9] Brouzet, R., Géométrie des systémes bihamiltoniens en dimension 4, Thése (1991), Montpellier
[10] Brouzet, R.; Molino, P.; Turiel, F. J., Systémes bihamiltoniens (1991-92), Séminaire Gaston Darboux: Séminaire Gaston Darboux Montpellier
[11] Caccese, E., On some involution theorems on twofold Poisson manifolds, Lett. Math. Phys., 15, 193-200 (1988) · Zbl 0652.58029
[12] Darboux, G. - Leçons sur la Théorie générale des Surfaces, Gauthier-Villars, Paris.; Darboux, G. - Leçons sur la Théorie générale des Surfaces, Gauthier-Villars, Paris.
[13] Dazord, P.; Delzant, T., Le probléme général des variables action-angle, Jour. of Diff. Geom., 26, 223-251 (1987) · Zbl 0634.58003
[14] Delzant, T., Hamiltoniens périodiques et image convexe de l’application moment, Bull. Soc. Math. F., 116, 315-339 (1988) · Zbl 0676.58029
[15] Duistermaat, J. J., On global action-angle coordinates, Comm. on Pure and Appl. Math., 33, 687-706 (1980) · Zbl 0439.58014
[16] Fried, D.; Goldman, W.; Hirsch, M. W., Affine manifolds with nilpotent holonomy, Comment. Math. Helv., 56, 487-523 (1981) · Zbl 0516.57014
[17] Frölicher, A.; Nijenhuis, A., Theory of vector-valued differential forms I, Indag. Math., 18, 338-359 (1956) · Zbl 0079.37502
[18] Godbillon, C., Systémes dynamiques sur les surfaces (1985), Publ. IRMA: Publ. IRMA Strasbourg · Zbl 0515.58001
[19] Goursat, E., Leçons sur les EDP du second ordre II (1898), Hermann: Hermann Paris
[20] Greub, W.; Halperin, S.; Vanstone, R., Connections, curvature and cohomology, Vol. II (1973), Acad. Press · Zbl 0335.57001
[21] Gutkin, D., Variétés bistructurées et opérateurs de récursion, Ann. IHP, 43, 349-357 (1985) · Zbl 0587.58015
[22] Guillemin, V.; Sternberg, S., Convexity properties of the moment mapping, Invent. Math., 67, 491-513 (1982) · Zbl 0503.58017
[23] Kosmann-Schwarzbach, Y.; Magri, F., Magri-Poisson-Nijenhuis structures, Ann. IHP, Phys. Theor., 53, 35-81 (1990) · Zbl 0707.58048
[24] Krichever, I. M., Integration of nonlinear equations by the methods of algebraic geometry, Func. An. Appl., 11, 12-26 (1977) · Zbl 0368.35022
[25] Kuiper, N., Sur les surfaces localement affines, Coll. Geom. Diff., 79-87 (1953), Strasbourg · Zbl 0053.13003
[26] Libermann, P.; Marle, C. M., Géométrie symplectique; bases théoriques de la mécanique (1988), Publ. Univ. Paris VIII
[27] Lie, S., Zur allgemeinen Theorie der partiellen Differentialgleichungen beliebiger Ordnung, Ber. der Kön. Sächs. Gesellschaft (1895) · JFM 26.0402.01
[28] Magri, F., A simple model of the integrable hamiltonian equations, J. Math. Phys., 19, 1156-1162 (1978) · Zbl 0383.35065
[29] Magri, F.; Morosi, C., A geometrical characterization of integrable hamiltonian systems through the theory of Poisson-Nijenhuis manifolds (1984), Publ. Dept. Math: Publ. Dept. Math Milan
[30] Marmo, G., A geometrical characterization of completely integrable systems, Proceed. “Geometry and Phys.O (1982), Firenze · Zbl 0548.58018
[31] Molino, P., Du théoréme d’Arnold-Liouville aux formes normales de systémes hamiltoniens toriques: une conjecture (1989-90), Séminaire Gaston Darboux: Séminaire Gaston Darboux Montpellier · Zbl 0734.70013
[32] Nijenhuis, A., Jacobi-type identities for bilinear concomitants of certain tensor fields, Indagationes Math., A58, 390-403 (1955) · Zbl 0068.15001
[33] Novikov, S. P.; Veselov, A., Poisson brackets and complex tori, Proc. Steklov Inst. Math., 165, 53-65 (1985) · Zbl 0581.58017
[34] Scherer, W., A certain class of integrable systems is necessarily bihamiltonian (1990), TU Clausthal, Preprint
[35] Ten, Eikelder, On the local structure of recursion operators for symmetries, Indagat. Math., A89, 389-403 (1986) · Zbl 0612.58041
[36] Turiel, F. J., Classification locale d’un couple de formes symplectiques compatibles (1988-89), Séminaire Gaston Darboux: Séminaire Gaston Darboux Montpellier
[37] turiel, F. J., Classification locale d’un couple de formes symplectiques Poisson-compatibles, C.R.Ac.Sc. Paris, 308-I, 573-578 (1989) · Zbl 0673.53022
[38] Zakharov, V. E., Usp. Matem. Nauk., 37-2, 261-262 (1981)
[39] Zakharov, V. E., Integrable systems in multidimensional systems, (Lecture Notes in Phys., 153 (1983), Springer), 190-216
[40] Zakharov, V. E.; Shulman, E. I., On additional motion invariants of classical Hamiltonian wave systems, Physica D., 29, 283-320 (1988) · Zbl 0651.35080
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.