×

On the topology of double coset manifolds. (English) Zbl 0793.57019

Given a compact Lie group \(G\) and two closed subgroups \(K\) and \(H\) of \(G\) such that \(K \times H\) operates freely on \(G\) by \(g \cdot (k,h)=k^{-1} gh\), we can form the quotient \(K \backslash G/H\), which is a compact manifold called a double coset manifold. The objective of the present paper is to show that the topology of double coset manifolds is in many respects as easy to handle as that of homogeneous spaces.
In particular, there is an explicit description of the tangent bundle. Since, by the known collapsing results for the Eilenberg-Moore spectral sequence, the cohomology of \(K \backslash G/H\) is readily computable, formulas for the characteristic classes can be deduced, which generalize those of Borel-Hirzebruch for homogeneous spaces. For example, rational characteristic classes vanish in dimensions larger than \(\dim (K \backslash G/H)-(rk G-rk K-rk H)\). Finally, there is a formula for the Euler characteristics of \(K \backslash G/H\).

MSC:

57T15 Homology and cohomology of homogeneous spaces of Lie groups
57T35 Applications of Eilenberg-Moore spectral sequences
57R20 Characteristic classes and numbers in differential topology
55R40 Homology of classifying spaces and characteristic classes in algebraic topology

References:

[1] Baum, P.F.: On the cohomology of homogeneous spaces. Topology7, 15-38 (1968) · Zbl 0158.42002 · doi:10.1016/0040-9383(86)90012-1
[2] Borel, A., Hirzebruch, F.: Characteristic classes and homogeneous spaces, I, II, III. Am. J. Math.80, 458-538 (1958);81, 315-382 (1959);82, 491-504 (1960) · Zbl 0097.36401 · doi:10.2307/2372795
[3] Eschenburg, J.-H.: New examples of manifolds with strictly positive curvature. Invent. Math.66, 469-480 (1982) · Zbl 0484.53031 · doi:10.1007/BF01389224
[4] Eschenburg, J.-H.: Freie isometrische Aktionen auf kompakten Lie-Gruppen mit positiv gekr?mmten Orbitr?umen. Schriftenr. Math. Inst. Univ. M?nster, 2. Ser.32 (1984) · Zbl 0551.53024
[5] Eschenburg, J.-H.: Cohomology of biquotients. Manuscr. Math.75, 151-166 (1992) · Zbl 0769.53029 · doi:10.1007/BF02567078
[6] Eschenburg, J.-H.: Inhomogeneous spaces of positive curvature. Differ. Geom. Appl.2, 123-132 (1992) · Zbl 0778.53033 · doi:10.1016/0926-2245(92)90029-M
[7] Gromoll, D., Meyer, W.T.: An exotic sphere with nonnegative sectional curvature. Ann. Math.100, 401-406 (1974) · Zbl 0293.53015 · doi:10.2307/1971078
[8] Gugenheim, V.K.A.M., May, J.P.: On the theory and applications of differential torsion products. Mem. Am. Math. Soc.142 (1974) · Zbl 0292.55019
[9] Hirzebruch, F.: A Riemann-Roch theorem for differentiable manifolds. S?minaire Bourbaki, expos? 177 (F?vrier 1959) · Zbl 0129.15406
[10] Hirzebruch, F., Slodowy, P.: Elliptic genera, involutions, and homogeneous spin manifolds. Geom. Dedicata35, 309-343 (1990) · Zbl 0712.57010 · doi:10.1007/BF00147351
[11] Huebschmann, J.: Perturbation theory and small models for the chains of certain induced fibre spaces. Habilitationsschrift, Heidelberg, 1984 · Zbl 0576.55012
[12] Husemoller, D., Moore, J.C., Stasheff, J.: Differential homological algebra and homogeneous spaces. J. Pure Appl. Algebra5, 113-185 (1974) · Zbl 0364.18008 · doi:10.1016/0022-4049(74)90045-0
[13] MacLane, S.: Homology. Berlin Heidelberg New York: Springer 1963 · Zbl 0133.26502
[14] Munkholm, H.J.: The Eilenberg-Moore spectral sequence and strongly homotopy multiplicative maps. J. Pure Appl. Algebra5, 1-50 (1974) · Zbl 0294.55011 · doi:10.1016/0022-4049(74)90002-4
[15] Riordan, J.: Combinatorial identities. New York: Wiley 1968 · Zbl 0194.00502
[16] Singhof, W., Wemmer, D.: Parallelizability of homogeneous spaces, II. Math. Ann.274, 157-176 (1986);276, 699-700 (1987) · Zbl 0572.57014 · doi:10.1007/BF01458022
[17] Smith, L.: Homological algebra and the Eilenberg-Moore spectral sequence. Trans. Am. Math. Soc.129, 58-93 (1967) · Zbl 0177.51402 · doi:10.1090/S0002-9947-1967-0216504-6
[18] Wolf, J.: The cohomology of homogeneous spaces. Am. J. Math.99, 312-340 (1977) · Zbl 0373.57025 · doi:10.2307/2373822
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.