×

Regularity of solutions and the convergence of the Galerkin method in the Ginzburg-Landau equation. (English) Zbl 0792.35096

Summary: An analytical explanation is given for two phenomena observed in numerical simulations of the Ginzburg-Landau equation on the domain \([0,1]^ D\) (\(D = 1,2,3\)) with periodic boundary conditions. First, it is shown that the solutions with \(H^ 1_{\text{per}}((0,1)^ D)\) initial data become analytic (in the spatial variable). This behavior accounts for the numerically observed exponential decay of the Fourier- modes. Then, based on the regularity result, it is shown that the (linear) Galerkin method has an exponential rate of convergence. This gives an explanation of simulations which show that the Ginzburg-Landau equation can be approximated by very low dimensional Galerkin projections. Furthermore, we discuss the influence of the parameters in the Ginzburg-Landau equation on the decay rate of the Fourier-modes and on the rate of convergence of the Galerkin approximations.

MSC:

35K60 Nonlinear initial, boundary and initial-boundary value problems for linear parabolic equations
35K55 Nonlinear parabolic equations
35A35 Theoretical approximation in context of PDEs
Full Text: DOI

References:

[1] Bartuccelli M., Physica 44 pp 421– (1990)
[2] Bernoff A.J., Physica 30 pp 363– (1988)
[3] DOI: 10.1098/rsta.1980.0265 · Zbl 0445.76013 · doi:10.1098/rsta.1980.0265
[4] DOI: 10.1007/BF02278004 · Zbl 0756.35096 · doi:10.1007/BF02278004
[5] Constantin P., Attaractors and spectral gaps in a class of vector Ginzburg-Ladau equation (1992)
[6] Constantin P., Navier-Stokes Equations (1988) · Zbl 0687.35071
[7] Devulder C., Math.Comp. (1993)
[8] DOI: 10.1017/S0022112071002337 · Zbl 0229.76039 · doi:10.1017/S0022112071002337
[9] Doelman A., Phys. 40 pp 156– (1989)
[10] DOI: 10.1088/0951-7715/4/2/003 · Zbl 0841.35007 · doi:10.1088/0951-7715/4/2/003
[11] Doelman, A. and Titi, E.S. On the exponential rate of convergence of the Galerkin approximation in the Ginzburg-Landau equation. Proceedings of the NATO Advanced Research Workshop. Edited by: Garbey, M. and Kaper, H. pp.241–252. Dordrecht: Kluwer Academic Publishers. · Zbl 0806.65088
[12] DOI: 10.1088/0951-7715/1/2/001 · Zbl 0655.58021 · doi:10.1088/0951-7715/1/2/001
[13] Duan J., Regularity, approximation and asymptotic dynamics for a generalized Ginzburg-Landau equation, Nonlinearity (1992)
[14] DOI: 10.1016/0022-1236(89)90015-3 · Zbl 0702.35203 · doi:10.1016/0022-1236(89)90015-3
[15] Friedman A., Partial Differential Equations (1976)
[16] Ghidaglia J.M., Physica 28 pp 282– (1987)
[17] DOI: 10.1007/BF02429847 · Zbl 0795.35112 · doi:10.1007/BF02429847
[18] DOI: 10.1017/S0022112072001326 · Zbl 0232.76053 · doi:10.1017/S0022112072001326
[19] Holmes P., Phys. 23 pp 84– (1986)
[20] Iooss G., Eur.J.Mech.B/Fluids 8 pp 229– (1989)
[21] John F., Partial Differential Equations (1982) · Zbl 0472.35001 · doi:10.1007/978-1-4684-9333-7
[22] DOI: 10.1090/S0025-5718-1987-0906175-1 · doi:10.1090/S0025-5718-1987-0906175-1
[23] Keefe L.R., Stud.in Appl.Math. 73 pp 91– (1985) · Zbl 0575.76055 · doi:10.1002/sapm198573291
[24] Kreiss H.O., Analyse Mathematique et Applications pp 245–
[25] Kuramoto Y., Chemical Oscillations,Waves and Turbulence (1984) · Zbl 0558.76051 · doi:10.1007/978-3-642-69689-3
[26] Moon H.T., Physica 7 pp 135– (1983)
[27] Newell A.C., Lect.Appl.Math. 15 pp 157– (1974)
[28] DOI: 10.1017/S0022112069000176 · Zbl 0187.25102 · doi:10.1017/S0022112069000176
[29] Newton P.K., Quart.Appl.Math. 44 pp 49– (1986) · Zbl 0641.76005 · doi:10.1090/qam/856192
[30] Promislow K., Physica 41 pp 232– (1990)
[31] Promislow K., The development and numerical implementation of approximate inertial manifolds for the Ginzburg-Landau equation (1990) · Zbl 0696.35177
[32] Rodriguez J.D., Physica 43 pp 77– (1990)
[33] DOI: 10.1017/S0022112071001733 · Zbl 0222.76045 · doi:10.1017/S0022112071001733
[34] DOI: 10.1088/0951-7715/5/2/002 · Zbl 0743.35079 · doi:10.1088/0951-7715/5/2/002
[35] Temam R., Navier-Stokes Equations:Theory and Numerical Solution 2 (1977)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.