×

The addition theorem of Weierstrass’s sigma function. (English) Zbl 0791.39009

Summary: Weierstraß’s \(\sigma\)-function is a solution \(\theta\) of the following functional equation (1) \(\theta(u+v_ 1)\theta (u-v_ 1) \theta(v_ 2+v_ 3) \theta(v_ 2-v_ 3)+\theta (u+v_ 2) \theta (u- v_ 2) \theta (v_ 3+v_ 1) \theta(v_ 3-v_ 1)+\theta (u+v_ 3) \theta (u-v_ 3) \theta (v_ 1+v_ 2) \theta (v_ 1-v_ 2)=0\). This is the so-called addition theorem for the \(\sigma\)-function.
In this paper all continuous solutions \(\theta:\mathbb{R}^ n \to \mathbb{C}\) of (1) for arbitrary \(n \in \mathbb{N}\) are found. It turns out that the \(\sigma\)-function is in essence the only solution of the functional equation (1). This result is obtained from investigations which are centered around the functional equation \(\chi (u+v) \varphi (u-v)=\sum^ k_{\nu=1} f_ \nu (u) g_ \nu(v)\), which is well-known in connection with the addition theorems for theta functions.

MSC:

39B32 Functional equations for complex functions
33E05 Elliptic functions and integrals
30D05 Functional equations in the complex plane, iteration and composition of analytic functions of one complex variable

References:

[1] Acz?l, J.: The state of the second part of Hilbert’s fifth problem. Bull. Am. Math. Soc.20, 153-163 (1989) · Zbl 0676.39004 · doi:10.1090/S0273-0979-1989-15749-2
[2] Acz?l, J., Dhombres, J.: Functional equations in several variables. Cambridge: Cambridge University Press 1989 · Zbl 0685.39006
[3] Bonk, M.: On the second part of Hilbert’s fifth problem. Math. Z.210, 475-493 (1992) · Zbl 0766.39007 · doi:10.1007/BF02571809
[4] Bonk, M.: The characterization of theta functions by functional equations. Habilitationsschrift, Braunschweig (unpublished, 1991) · Zbl 0749.30022
[5] Burckel, R.B.: An introduction to classical complex analysis. Boston, Basel Stuttgart: Birkh?user 1979 · Zbl 0434.30001
[6] Deslisle, A.: Bestimmung der allgemeinsten der Funktionalgleichung der ?-Funktion gen?genden Funktion. Math. Ann.30, 91-119 (1887) · JFM 19.0458.02 · doi:10.1007/BF01564532
[7] Dieudonn?, J.: Foundations of modern analysis. New York: Academic Press 1969 · Zbl 0176.00502
[8] Hancock, H.: Lectures on the theory of elliptic functions. New York: Dover 1958 · Zbl 0084.07302
[9] Haruki, H.: Studies on certain functional equations from the standpoint of analytic function theory. Sci. Rep. Osaka Univ.14, 1-40 (1965) · Zbl 0139.09703
[10] Hurwitz, A.: ?ber die Weierstrass’sche ?-Funktion, pp. 133-141. Berlin 1914 In: Ges. Abh., Bd. 2, pp. 722-730. Boston Basel Stuttgart: Birkh?user 1932
[11] Igusa, J.: Theta functions. Berlin Heidelberg New York: Springer 1972 · Zbl 0251.14016
[12] Krazer, A.: Lehrbuch der Thetafunktionen. Leipzig: Teubner 1903 · JFM 34.0492.08
[13] Nevanlinna, R.: Eindeutige analytische Funktionen, 2. Aufl. Berlin Heidelberg New York: Springer 1953 · Zbl 0050.30302
[14] Rochberg, R., Rubel, L.A.: A functional equation. Indiana Univ. Math. J.41, 363-376 (1992) · Zbl 0756.39012 · doi:10.1512/iumj.1992.41.41020
[15] Stein, E.M., Weiss, G.: Introduction to Fourier analysis on Euclidean spaces. Princeton: Princeton University Press 1971 · Zbl 0232.42007
[16] Van Vleck, E.B., H’Doubler, F.: A study of certain functional equations for the ?, Trans. Amer. Math. Soc.17, 9-49 (1916) · JFM 46.0604.02
[17] Weierstra?, K.: Zur Theorie der Jacobischen Funktionen von mehreren Ver?nderlichen. Sitzungsber K?nigl. Preuss. Akad. Wiss. 505 508 (1882); In: Werke, Bd. 3, pp. 155-159. Berlin: Mayer & M?ller 1903
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.