×

On blow-up sets and asymptotic behavior of interfaces of one dimensional quasilinear degenerate parabolic equations. (English) Zbl 0789.35024

The author studies the initial boundary value problem for a quasilinear degenerate parabolic equation of the form \[ b(u)_ t= u_{xx}+ f(u) \qquad \text{in} \qquad x\in\Omega, \quad t>0, \quad \Omega\subset\mathbb{R}, \] under the initial condition \[ u(x,0)=u_ 0(x) \qquad \text{in} \qquad x\in\Omega, \] together with one of the following three types of boundary conditions: (a) The Dirichlet boundary conditions with \(\Omega=(0,L)\), \(u(0,t)= u(L,t)=0\) in \(t>0\); (b) The Neumann boundary conditions with \(\Omega=(0,L)\), \(u_ x(0,t)= u_ x(L,t)=0\) in \(t>0\); (c) The Cauchy problem, namely, \(\Omega=\mathbb{R}\).
In the case of the Dirichlet or Neumann problem, it is shown that if \(f(u)\) grows more rapidly than \(u\), then the blow-up set of a blow-up solution is finite.
In the case of the Cauchy problem, it is assumed that the initial data \(u_ 0(x)\) has a compact support \([0,L]\). The author is interested in the behavior of the interface near the blow-up time \(t=T\) as well as the shape of the blow-up set.

MSC:

35B40 Asymptotic behavior of solutions to PDEs
35K55 Nonlinear parabolic equations
35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs
35K65 Degenerate parabolic equations
Full Text: DOI

References:

[1] Angenent, S., The zeroset of a solution of a parabolic equation, /. Reine Angew. Math., 390 (1988), 79-96. · Zbl 0644.35050 · doi:10.1515/crll.1988.390.79
[2] Aronson, D. G., Crandall, M. G. and Peletier, L. A., ●Stabilization of solutions of a degenerate nonlinear diffusion problem, Nonlinear Anal., 6(1982), 1001-1022. · Zbl 0518.35050 · doi:10.1016/0362-546X(82)90072-4
[3] Bertsch, M., Kersner, R. and Peletier L. A., Positivity versus localization in degenerate diffusion equations, Nonlinear Anal., 9(1985), 987-1008. · Zbl 0596.35073 · doi:10.1016/0362-546X(85)90081-1
[4] Chen, X. -Y. and Matano, H., Convergence, asymptotic periodicity and finite-point blow-up in one-dimensional semilinear heat equations, /. Differential Equations, 78(1989), 160-190. · Zbl 0692.35013 · doi:10.1016/0022-0396(89)90081-8
[5] Friedman, A. and McLeod, B., Blow-up of positive solutions of semilinear heat equations, Indiana Univ. Math. J., 34(1985), 425-447. · Zbl 0576.35068 · doi:10.1512/iumj.1985.34.34025
[6] Galaktinov, V. A., Kurdyumov, S. P., Mikhailov, A. P. and Samrskii A. A., On unbounded solutions of the Cauchy problem for the parabolic equation ut = V(uaVu) + i/, Dokl.Akad.Nauk SSSR., 252(1980), 1362-1364; Soviet Phys. Dokl, 25(1980), 458-459.
[7] Galaktinov, V. A., Proof of the localization of unbounded solutions of the non-linear partial differential equation ut = (uaux)x + uft, DifferentiaVnye Uravneniya, 21(1985), 15-23; Differen- tial Equations, 21(1985), 11-18.
[8] Imai, T. and Mochizuki, K., On blow-up Solutions for quasilinear degenerate parabolic equations, preprint 1989. · Zbl 0789.35022 · doi:10.2977/prims/1195169267
[9] Itaya, N., A note on the blowup-nonblowup problems in nonlinear parabolic equations, Proc. Japan Acad., 55(1979), 241-244. · Zbl 0452.35063 · doi:10.3792/pjaa.55.241
[10] , On some subjects related to the blowing-up problem in nonlinear parabolic equations, Lecture Notes in Num. Aptt. Anal, 2(1980), 27-38, Kinokuniya. · Zbl 0467.35010
[11] Knerr, B. F., The porous medium equation in one dimension, Trans. Amer. Math. Soc., 234(1977), 381-415. · Zbl 0365.35030 · doi:10.2307/1997927
[12] Ladyzenskaja, O. A., Solonnikov, V. A. and Ural’ceva, N. N., Linear and Quasilinear Equations of Parabolic Type, Trncl. Math. Monographs, 23 AMS Providence, R. I. 1968. · Zbl 0174.15403
[13] Oleinik, O. A., Kalashnikov A. S. and Chzou Yui-Lin, The Cauchy problem and boundary problems for equations of the type of nonlinear filtration, Izv. Akad. Nauk SSSR Ser. Math., 22(1958), 667-704 (Russian). · Zbl 0093.10302
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.