×

Mixed-mode oscillation genealogy in a compartmental model of bone mineral metabolism. (English) Zbl 0788.92005

Summary: A well-supported self-oscillating eight-compartment model has been proposed by J. F. Staub et al. [Am. J. Physiol. 254, R 134-139 (1988)] to account for the in vivo rat calcium metabolism. The nonlinear nucleus of this model is a three-compartment subunit which represents the dynamic autocatalytic processes of phase transition at the interface between bone and extracellular fluids. The organization of the temporal mixed-mode oscillations which successively appear as the calcium input is varied is analyzed.
On one side of the bifurcation diagram, the generation of periodic trajectories with a single large amplitude oscillation is governed by homoclinic tangencies to small amplitude limit cycles and follows the universal sequence (\(U\)-sequence) given for the periodic solutions of unimodal transformations of the unit interval into itself. On the other side, the progressive appearance and interweaving of trajectories with multiple large amplitude oscillations per period is linked to homoclinic tangencies to large amplitude unstable cycles.
The bifurcation sequence responsible for the temporal pattern generation has been analyzed by modeling the first return map of the differential system associated with the compartmental subunit. We establish that this genealogy does not follow the usual Farey treelike organization and that a comprehensive view of the resulting fractal bifurcation structure can be obtained from the unfolding of singular points of bimodal maps. These theoretical features can be compared with those reported in experiments on dissolution processes, and the extent to which the knowledge of the subunit bifurcation structure provides new conceptual insights in the field of bone and calcium metabolism is discussed.

MSC:

92C30 Physiology (general)
37N99 Applications of dynamical systems
34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
Full Text: DOI

References:

[1] Albahadily, F. N., and Schell, M.: An experimental investigation of periodic and chaotic electrochemical oscillations in the anodic dissolution of copper in phosphoric acid.J. Chem. Phys. 88, 4312–4319 (1988). · doi:10.1063/1.453790
[2] Alexander, J. C., and Cai, D. Y.: On the dynamics of bursting systems.J. Math. Biol. 29, 405–423 (1991). · Zbl 0721.92004 · doi:10.1007/BF00160469
[3] Argoul, F., Arneodo, A., and Richetti, P.: Symbolic dynamics in the Belousov-Zhabotinskii reaction: An experimental and theoretical approach of Shil’nikov homoclinic chaos. In Gray, P., Nicolis, G., Baras, F., Borckmans, P. and Scott, S. K. (eds.),Spatial inhomogeneities and transient behaviour in chemical kinetics, pp. 57–66. New York: Manchester University Press, 1990. · Zbl 0708.92005
[4] Coffman, K. G., McCormick, W. D., Noszticzius, Z., Simoyi, R. H., and Swinney, H. L.: Universality, multiplicity and the effect of iron impurities in the Belousov-Zhabotinskii reaction.J. Chem. Phys. 86, 119–129 (1987). · doi:10.1063/1.452603
[5] Decroly, O., and Goldbeter, A.: Selection between multiple periodic regimes in a biochemical system: Complex dynamic behaviour resolved by use of one dimensional maps.J. Theoret. Biol. 113, 649–671 (1985). · doi:10.1016/S0022-5193(85)80185-5
[6] Decroly, O., and Goldbeter, A.: From simple to complex oscillatory behaviour: analysis of bursting in a multiply regulated biochemical system.J. Theoret. Biol. 124, 219–250 (1987). · doi:10.1016/S0022-5193(87)80264-3
[7] Derrida, B., Gervois, A., and Pomeau, Y.: Iteration of endomorphisms on the real axis and representation of numbers.Ann. Inst. H. Poincaré 29, 305–356 (1978). · Zbl 0416.28012
[8] Feigenbaum, M. J.: Universal behavior in nonlinear systems.Phys. D 7, 16–39 (1983). · Zbl 0556.34046 · doi:10.1016/0167-2789(83)90112-4
[9] Gaspard, P., and Nicolis, G.: What can we learn from homoclinic orbits in chaotic dynamics?J. Stat. Phys. 31, 499–518 (1983). · Zbl 0587.58035 · doi:10.1007/BF01019496
[10] Gaspard, P., and Wang, X. J.: Homoclinic orbits and mixed-mode oscillations in far-from-equilibrium systems.J. Stat. Phys. 48, 151–199 (1987). · doi:10.1007/BF01010405
[11] Gavrilov, N. K., and Shil’nikov, L. P.: On three dimensional dynamical systems close to systems with a structurally unstable homoclinic curve. I.Math. USSR-Sb. 17, 467–485 (1972). · Zbl 0255.58006 · doi:10.1070/SM1972v017n04ABEH001597
[12] Gavrilov, N. K., and Shil’nikov, L. P.: On three dimensional dynamical systems close to systems with a structurally unstable homoclinic curve. II.Math. USSR-Sb. 19, 139–156 (1973). · Zbl 0273.58009 · doi:10.1070/SM1973v019n01ABEH001741
[13] Glarum, S. H., and Marshall J. H.: The anodic dissolution of copper into phosphoric acid. I. Voltammetric and oscillatory behavior.J. Electrochem. Soc. 132, 2872–2878 (1985). · doi:10.1149/1.2113686
[14] Glendinning, P., and Sparrow, C.: Local and global behavior near homoclinic orbits.J. Stat. Phys. 35, 645–696, (1984). · Zbl 0588.58041 · doi:10.1007/BF01010828
[15] Hindmarsh, A. C.: LSODE and LSODI, two new initial value ordinary differential equation solvers.ACM-signum Newsletter 15, 10–11 (1980). · doi:10.1145/1218052.1218054
[16] Larson, M. A., and Garside, J.: Solute clustering and interfacial tension.J. Cryst. Growth 76, 88–92 (1986). · doi:10.1016/0022-0248(86)90013-8
[17] Larter, R., Bush, C. L., Lonis, T. R., and Aguda, B. D.: Multiple steady states, complex oscillations, and the devil’s staircase in the peroxidase-oxidase reaction.J. Chem. Phys. 87, 5765–5771 (1987). · doi:10.1063/1.453550
[18] Lozi, R.: A mathematical model of sequence of pattern bifurcations in the Belousov-Zhabotinsky reaction.C. R. Acad. Sci. Paris, Ser. I 294, 21–26 (1982). · Zbl 0479.34017
[19] Mackay, R. S., and Tresser, C.: Some flesh on the skeleton: The bifurcation structure of bimodal maps.Phys. D 27, 412–422 (1987). · Zbl 0626.58038 · doi:10.1016/0167-2789(87)90040-6
[20] Maselko, J., and Swinney, H.L.: Complex periodic oscillations and Farey arithmetic in the Belousov-Zhabotinskii reaction.J. Chem. Phys. 85, 6430–6441 (1986). · doi:10.1063/1.451473
[21] Metropolis, N., Stein, M. L., and Stein, P. R.: On finite limit sets for transformations on the unit interval.J. Combin. Theor. A 15, 25–44 (1973). · Zbl 0259.26003 · doi:10.1016/0097-3165(73)90033-2
[22] Mori, S., and Di Cera, E.: Birhythmicity and a route to turbulence through limit cycle fusion in a simple autocatalytic system.Phys. Lett. A 143, 369–372 (1990). · doi:10.1016/0375-9601(90)90374-W
[23] Mundy, G. R.:Calcium homeostasis: Hypercalcemia and hypocalcemia. London: Martin Dunitz, 1990.
[24] Parida, G. R., and Schell, M.: Coexisting cyclic voltammograms.J. Phys. Chem. 95, 2356–2361 (1991). · doi:10.1021/j100159a044
[25] Peng, B., Scott, S. K., and Showalter, K.: Period-doubling and chaos in a three-variable autocatalator.J. Phys. Chem. 94, 5243–5246 (1990). · doi:10.1021/j100376a014
[26] Perault-Staub, A. M., Staub, J. F., and Milhaud, G.: Extracellular calcium homeostasis. In Heersche, J. N. M., and Kanis, J. A. (eds.),Bone and mineral research, vol. 7, pp. 1–102. New York: Elsevier, 1990. · Zbl 0626.92008
[27] Richetti, P., Roux, J. C., Argoul, F., and Arneodo, A.: From quasiperiodicity to chaos in the Belousov-Zhabotinskii reaction. II. Modeling and theory.J. Chem. Phys. 86, 3339–3356 (1987). · doi:10.1063/1.451992
[28] Ringland, J., and Schell, M.: The Farey tree embodied in bimodal maps of the interval.Phys. Lett. A 136, 379–386 (1989). · doi:10.1016/0375-9601(89)90419-2
[29] Ringland, J., Issa, N., and Schell, M.: From U sequence to Farey sequence: A unification of one-parameter scenarios.Phys. Rev. A 41, 4223–4235 (1990). · doi:10.1103/PhysRevA.41.4223
[30] Ringland, J., and Schell, M.: Genealogy and bifurcation skeleton for cycles of the iterated two-extremum map of the interval.SIAM J. Math. Anal. 22, 1354–1371 (1991). · Zbl 0752.58024 · doi:10.1137/0522087
[31] Rinzel, J., and Troy, W. C.: A one-variable map analysis of bursting in the Belousov-Zhabotinskii reaction.Contemp. Math. 17, 411–427 (1983). · Zbl 0514.34033
[32] Rössler, O. E.: Chaos in abstract kinetics: Two prototypes.Bull. Math. Biol. 39, 275–289 (1977). · Zbl 0365.92003
[33] Schell, M., and Albahadily, F. N.: Mixed-mode oscillations in an electrochemical system. II. A periodic-chaotic sequence.J. Chem. Phys. 90, 822–828 (1989). · doi:10.1063/1.456107
[34] Schlögl, F.: On thermodynamics near a steady state.Z. Phys. 248, 446–458 (1971). · doi:10.1007/BF01395694
[35] Schlögl, F.: Chemical reaction models for non-equilibrium phase transitions.Z. Phys. 253, 147–161 (1972). · doi:10.1007/BF01379769
[36] Scott, S. K., and Tomlin, A. S.: Period doubling and other complex bifurcations in nonisothermal chemical systems.Phil. Trans. A 332, 51–68 (1990). · Zbl 0729.92032 · doi:10.1098/rsta.1990.0100
[37] Sel’kov, E. E.: Self-oscillations in glycolysis.Eur. J. Biochem. 4, 79–86 (1968). · doi:10.1111/j.1432-1033.1968.tb00175.x
[38] Söhnel, O., and Garside, J.: Solute clustering and nucleation.J. Cryst. Growth 89, 202–208 (1988). · doi:10.1016/0022-0248(88)90403-4
[39] Staub, J. F., Perault-Staub, A. M., and Milhaud, G.: Endogenous nature of circadian rhythms in calcium metabolism.Am. J. Physiol. 237, R311-R317 (1979).
[40] Staub, J. F., Tracqui, P., Brezillon, P., Milhaud, G., and Perault-Staub, A. M.: Calcium metabolism in the rat: A temporal self-organized model.Am. J. Physiol. 254, R134-R139 (1988).
[41] Staub, J. F., Tracqui, P., Lausson, S., Milhaud, G., and Perault-Staub, A. M.: A physiological view of in vivo calcium dynamics: The regulation of a nonlinear self-organized system.Bone 10, 77–86 (1989). · Zbl 0678.92005 · doi:10.1016/8756-3282(89)90002-1
[42] Steinmetz, C. G., and Larter, R.: The quasiperiodic route to chaos in a model of the peroxidase-oxidase reaction.J. Chem. Phys. 94, 1388–1396 (1991). · doi:10.1063/1.459996
[43] Terman, D.: The transition from bursting to continuous spiking in excitable membrane models.J. Nonlin. Sci. 2, 135–182 (1992). · Zbl 0900.92059 · doi:10.1007/BF02429854
[44] Tracqui, P., Perault-Staub, A. M., Milhaud, G., and Staub, J. F.: Theoretical study of a two dimensional autocatalytic model for calcium dynamics at the extracellular fluid-bone interface.Bull. Math. Biol. 49, 597–613 (1987). · Zbl 0626.92008
[45] Tracqui, P., Staub, J. F., and Perault-Staub, A. M.: Analysis of degenerate Hopf bifurcations for a nonlinear model of rat metabolism.Nonlin. Anal.: Theor. Methods Appl. 13, 429–457 (1989). · Zbl 0678.92005 · doi:10.1016/0362-546X(89)90049-7
[46] Tracqui, P., Staub, J. F., and Perault-Staub, A. M.: Modelling of in vivo calcium metabolism. II. Minimal structure or maximum dynamic diversity: The interplay of biological constraints.Acta Biotheor. 40, 103–111 (1992). · Zbl 0678.92005 · doi:10.1007/BF00168139
[47] Tracqui, P.: Homoclinic tangencies in an autocatalytic model of interfacial processes at the bone surface,Physica D 62, 275–289 (1993). · Zbl 0783.92012 · doi:10.1016/0167-2789(93)90287-B
[48] Tyson, J., and Kauffman, S.: Control of mitosis by a continuous biochemical oscillation: synchronization; spatially inhomogeneous oscillations.J. Math. Biol. 1 289–310 (1975). · Zbl 0299.92004
[49] Tyson, J. J.: Modeling the cell division cycle: cdc2 and cyclin interactions.Proc. Natl. Acad. Sci. USA 88, 7328–7332 (1991). · doi:10.1073/pnas.88.16.7328
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.