×

Synchronization in the Kuramoto model in presence of stochastic resetting. (English) Zbl 07874219


MSC:

82Cxx Time-dependent statistical mechanics (dynamic and nonequilibrium)
34Cxx Qualitative theory for ordinary differential equations
34Dxx Stability theory for ordinary differential equations

References:

[1] Kuramoto, Y., Chemical Oscillations, Waves and Turbulence, 1984, Springer · Zbl 0558.76051
[2] Strogatz, S. H., From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators, Physica D, 143, 1-20, 2000 · Zbl 0956.00057 · doi:10.1016/S0167-2789(00)00094-4
[3] Acebrón, J. A.; Bonilla, L. L.; Vicente, C. J. P.; Ritort, F.; Spigler, R., The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys., 77, 137, 2005 · doi:10.1103/RevModPhys.77.137
[4] Gupta, S.; Campa, A.; Ruffo, S., Kuramoto model of synchronization: Equilibrium and nonequilibrium aspects, J. Stat. Mech., R08001, 2014 · Zbl 1456.34060
[5] Rodrigues, F. A.; Peron, T. K. D.; Ji, P.; Kurths, J., The Kuramoto model in complex networks, Phys. Rep., 610, 1-98, 2016 · Zbl 1357.34089 · doi:10.1016/j.physrep.2015.10.008
[6] Gupta, S.; Campa, A.; Ruffo, S., Statistical Physics of Synchronization, 2018, Springer · Zbl 1407.82003
[7] Pikovsky, A.; Kurths, J.; Rosenblum, M.; Kurths, J., Synchronization: A Universal Concept in Nonlinear Sciences, 2003, Cambridge University Press · Zbl 1219.37002
[8] Strogatz, S., Sync: The Emerging Science of Spontaneous Order, 2004, Penguin
[9] Pikovsky, A.; Rosenblum, M., Dynamics of globally coupled oscillators: Progress and perspectives, Chaos, 25, 097616, 2015 · Zbl 1374.34001 · doi:10.1063/1.4922971
[10] Martens, E. A.; Barreto, E.; Strogatz, S. H.; Ott, E.; So, P.; Antonsen, T. M., Exact results for the Kuramoto model with a bimodal frequency distribution, Phys. Rev. E, 79, 026204, 2009 · doi:10.1103/PhysRevE.79.026204
[11] Campa, A., Phase diagram of noisy systems of coupled oscillators with a bimodal frequency distribution, J. Phys. A: Math. Theor., 53, 154001, 2020 · Zbl 1514.82155 · doi:10.1088/1751-8121/ab79f2
[12] Einstein, A., Investigations on the Theory of the Brownian Movement, 1956, Courier Corporation · Zbl 0071.41205
[13] Majumdar, S. N., “Brownian functionals in physics and computer science,” in The Legacy Of Albert Einstein: A Collection of Essays in Celebration of the Year of Physics (World Scientific, 2007), pp. 93-129. · Zbl 1136.01013
[14] Mörters, P.; Peres, Y., Brownian Motion, 2010, Cambridge University Press · Zbl 1243.60002
[15] Evans, M. R.; Majumdar, S. N., Diffusion with stochastic resetting, Phys. Rev. Lett., 106, 160601, 2011 · doi:10.1103/PhysRevLett.106.160601
[16] Livi, R.; Politi, P., Nonequilibrium Statistical Physics: A Modern Perspective, 2017, Cambridge University Press · Zbl 1451.82001
[17] Mukamel, D., “Phase transitions in non-equilibrium systems,” cond-mat/0003424 (2000).
[18] Pal, A., Diffusion in a potential landscape with stochastic resetting, Phys. Rev. E, 91, 012113, 2015 · doi:10.1103/PhysRevE.91.012113
[19] Nagar, A.; Gupta, S., Diffusion with stochastic resetting at power-law times, Phys. Rev. E, 93, 060102, 2016 · doi:10.1103/PhysRevE.93.060102
[20] Majumdar, S. N.; Oshanin, G., Spectral content of fractional Brownian motion with stochastic reset, J. Phys. A: Math. Theor., 51, 435001, 2018 · Zbl 1407.60056 · doi:10.1088/1751-8121/aadef0
[21] Den Hollander, F.; Majumdar, S. N.; Meylahn, J. M.; Touchette, H., Properties of additive functionals of Brownian motion with resetting, J. Phys. A: Math. Theor., 52, 175001, 2019 · Zbl 1509.60142 · doi:10.1088/1751-8121/ab0efd
[22] Chatterjee, A.; Christou, C.; Schadschneider, A., Diffusion with resetting inside a circle, Phys. Rev. E, 97, 062106, 2018 · doi:10.1103/PhysRevE.97.062106
[23] Masoliver, J., Telegraphic processes with stochastic resetting, Phys. Rev. E, 99, 012121, 2019 · doi:10.1103/PhysRevE.99.012121
[24] Ray, S.; Reuveni, S., Diffusion with resetting in a logarithmic potential, J. Chem. Phys., 152, 234110, 2020 · doi:10.1063/5.0010549
[25] Montero, M.; Villarroel, J., Directed random walk with random restarts: The Sisyphus random walk, Phys. Rev. E, 94, 032132, 2016 · doi:10.1103/PhysRevE.94.032132
[26] Méndez, V.; Campos, D., Characterization of stationary states in random walks with stochastic resetting, Phys. Rev. E, 93, 022106, 2016 · doi:10.1103/PhysRevE.93.022106
[27] Kusmierz, L.; Majumdar, S. N.; Sabhapandit, S.; Schehr, G., First order transition for the optimal search time of Lévy flights with resetting, Phys. Rev. Lett., 113, 220602, 2014 · doi:10.1103/PhysRevLett.113.220602
[28] Belan, S., Restart could optimize the probability of success in a Bernoulli trial, Phys. Rev. Lett., 120, 080601, 2018 · doi:10.1103/PhysRevLett.120.080601
[29] Coghi, F.; Harris, R. J., A large deviation perspective on ratio observables in reset processes: Robustness of rate functions, J. Stat. Phys., 179, 131-154, 2020 · Zbl 1437.60016 · doi:10.1007/s10955-020-02513-3
[30] Kumar, V.; Sadekar, O.; Basu, U., Active Brownian motion in two dimensions under stochastic resetting, Phys. Rev. E, 102, 052129, 2020 · doi:10.1103/PhysRevE.102.052129
[31] Bressloff, P. C., Modeling active cellular transport as a directed search process with stochastic resetting and delays, J. Phys. A: Math. Theor., 53, 355001, 2020 · Zbl 1519.92062 · doi:10.1088/1751-8121/ab9fb7
[32] Evans, M. R.; Majumdar, S. N.; Mallick, K., Optimal diffusive search: Nonequilibrium resetting versus equilibrium dynamics, J. Phys. A: Math. Theor., 46, 185001, 2013 · Zbl 1267.82098 · doi:10.1088/1751-8113/46/18/185001
[33] Pal, A.; Reuveni, S., First passage under restart, Phys. Rev. Lett., 118, 030603, 2017 · doi:10.1103/PhysRevLett.118.030603
[34] Falcón-Cortés, A.; Boyer, D.; Giuggioli, L.; Majumdar, S. N., Localization transition induced by learning in random searches, Phys. Rev. Lett., 119, 140603, 2017 · doi:10.1103/PhysRevLett.119.140603
[35] Chechkin, A.; Sokolov, I., Random search with resetting: A unified renewal approach, Phys. Rev. Lett., 121, 050601, 2018 · doi:10.1103/PhysRevLett.121.050601
[36] Bhat, U.; De Bacco, C.; Redner, S., Stochastic search with Poisson and deterministic resetting, J. Stat. Mech., 2016, 083401, 2016 · Zbl 1456.60235 · doi:10.1088/1742-5468/2016/08/083401
[37] Ahmad, S.; Nayak, I.; Bansal, A.; Nandi, A.; Das, D., First passage of a particle in a potential under stochastic resetting: A vanishing transition of optimal resetting rate, Phys. Rev. E, 99, 022130, 2019 · doi:10.1103/PhysRevE.99.022130
[38] Roldán, É.; Lisica, A.; Sánchez-Taltavull, D.; Grill, S. W., Stochastic resetting in backtrack recovery by RNA polymerases, Phys. Rev. E, 93, 062411, 2016 · doi:10.1103/PhysRevE.93.062411
[39] Tucci, G.; Gambassi, A.; Gupta, S.; Roldán, É., Controlling particle currents with evaporation and resetting from an interval, Phys. Rev. Res., 2, 043138, 2020 · doi:10.1103/PhysRevResearch.2.043138
[40] Reuveni, S., Optimal stochastic restart renders fluctuations in first passage times universal, Phys. Rev. Lett., 116, 170601, 2016 · doi:10.1103/PhysRevLett.116.170601
[41] Boyer, D.; Solis-Salas, C., Random walks with preferential relocations to places visited in the past and their application to biology, Phys. Rev. Lett., 112, 240601, 2014 · doi:10.1103/PhysRevLett.112.240601
[42] Giuggioli, L.; Gupta, S.; Chase, M., Comparison of two models of tethered motion, J. Phys. A: Math. Theor., 52, 075001, 2019 · Zbl 1505.82049 · doi:10.1088/1751-8121/aaf8cc
[43] Gupta, S.; Majumdar, S. N.; Schehr, G., Fluctuating interfaces subject to stochastic resetting, Phys. Rev. Lett., 112, 220601, 2014 · doi:10.1103/PhysRevLett.112.220601
[44] Gupta, S.; Nagar, A., Resetting of fluctuating interfaces at power-law times, J. Phys. A: Math. Theor., 49, 445001, 2016 · Zbl 1357.82045 · doi:10.1088/1751-8113/49/44/445001
[45] Durang, X.; Henkel, M.; Park, H., The statistical mechanics of the coagulation-diffusion process with a stochastic reset, J. Phys. A: Math. Theor., 47, 045002, 2014 · Zbl 1293.82016 · doi:10.1088/1751-8113/47/4/045002
[46] Magoni, M.; Majumdar, S. N.; Schehr, G., Ising model with stochastic resetting, Phys. Rev. Res., 2, 033182, 2020 · doi:10.1103/PhysRevResearch.2.033182
[47] Basu, U.; Kundu, A.; Pal, A., Symmetric exclusion process under stochastic resetting, Phys. Rev. E, 100, 032136, 2019 · doi:10.1103/PhysRevE.100.032136
[48] Karthika, S.; Nagar, A., Totally asymmetric simple exclusion process with resetting, J. Phys. A: Math. Theor., 53, 115003, 2020 · Zbl 1514.82131 · doi:10.1088/1751-8121/ab6aef
[49] Fuchs, J.; Goldt, S.; Seifert, U., Stochastic thermodynamics of resetting, Europhys. Lett., 113, 60009, 2016 · doi:10.1209/0295-5075/113/60009
[50] Mukherjee, B.; Sengupta, K.; Majumdar, S. N., Quantum dynamics with stochastic reset, Phys. Rev. B, 98, 104309, 2018 · doi:10.1103/PhysRevB.98.104309
[51] Abeles, M., Local Circuits: An Electrophysiological Study (Springer-Verlag, Berlin, 1982).
[52] Ray, A.; Pal, A.; Ghosh, D.; Dana, S. K.; Hens, C., Mitigating long transient time in deterministic systems by resetting, Chaos, 31, 011103, 2021 · Zbl 1466.37060 · doi:10.1063/5.0038374
[53] Ott, E.; Antonsen, T. M., Low dimensional behavior of large systems of globally coupled oscillators, Chaos, 18, 037113, 2008 · Zbl 1309.34058 · doi:10.1063/1.2930766
[54] Ott, E.; Antonsen, T. M., Long time evolution of phase oscillator systems, Chaos, 19, 023117, 2009 · Zbl 1309.34059 · doi:10.1063/1.3136851
[55] Métivier, D.; Gupta, S., Bifurcations in the time-delayed Kuramoto model of coupled oscillators: Exact results, J. Stat. Phys., 176, 279-298, 2019 · Zbl 1448.34075 · doi:10.1007/s10955-019-02299-z
[56] Pazó, D.; Gallego, R., The Winfree model with non-infinitesimal phase-response curve: Ott-Antonsen theory, Chaos, 30, 073139, 2020 · Zbl 1445.34059 · doi:10.1063/5.0015131
[57] Tanaka, T., Low-dimensional dynamics of phase oscillators driven by Cauchy noise, Phys. Rev. E, 102, 042220, 2020 · doi:10.1103/PhysRevE.102.042220
[58] Xu, C.; Wang, X.; Skardal, P. S., Universal scaling and phase transitions of coupled phase oscillator populations, Phys. Rev. E, 102, 042310, 2020 · doi:10.1103/PhysRevE.102.042310
[59] Dai, X.; Li, X.; Guo, H.; Jia, D.; Perc, M.; Manshour, P.; Wang, Z.; Boccaletti, S., Discontinuous transitions and rhythmic states in the D-dimensional Kuramoto model induced by a positive feedback with the global order parameter, Phys. Rev. Lett., 125, 194101, 2020 · doi:10.1103/PhysRevLett.125.194101
[60] Lipton, M.; Mirollo, R.; Strogatz, S. H., The Kuramoto model on a sphere: Explaining its low-dimensional dynamics with group theory and hyperbolic geometry, Chaos, 31, 093113, 2021 · Zbl 07866706 · doi:10.1063/5.0060233
[61] Chandrasekar, V. K.; Manoranjani, M.; Gupta, S., The Kuramoto model in presence of additional interactions that break rotational symmetry, Phys. Rev. E, 102, 012206, 2020 · doi:10.1103/PhysRevE.102.0
[62] Berner, R.; Yanchuk, S.; Maistrenko, Y.; Schöll, E., Generalized splay states in phase oscillator networks, Chaos, 31, 073128, 2021 · Zbl 1468.34042 · doi:10.1063/5.0056664
[63] Lucchetti, A.; Jensen, M. H.; Heltberg, M. L., Emergence of chimera states in a neuronal model of delayed oscillators, Phys. Rev. Res., 3, 033041, 2021 · doi:10.1103/PhysRevResearch.3.033041
[64] Kumarasamy, S.; Dudkowski, D.; Prasad, A.; Kapitaniak, T., Ordered slow and fast dynamics of unsynchronized coupled phase oscillators, Chaos, 31, 081102, 2021 · Zbl 07866657 · doi:10.1063/5.0063513
[65] Ciszak, M.; Olmi, S.; Innocenti, G.; Torcini, A.; Marino, F., Collective canard explosions of globally-coupled rotators with adaptive coupling, Chaos Soliton. Fract., 153, 111592, 2021 · doi:10.1016/j.chaos.2021.111592
[66] Laing, C. R., Interpolating between bumps and chimeras, Chaos, 31, 113116, 2021 · Zbl 07871539 · doi:10.1063/5.0070341
[67] Manoranjani, M.; Gupta, S.; Chandrasekar, V., The Sakaguchi-Kuramoto model in presence of asymmetric interactions that break phase-shift symmetry, Chaos, 31, 083130, 2021 · Zbl 07866688 · doi:10.1063/5.0055664
[68] Clusella, P.; Pietras, B.; Montbrió, E., Kuramoto model for populations of quadratic integrate-and-fire neurons with chemical and electrical coupling, Chaos, 32, 013105, 2022 · Zbl 07867647 · doi:10.1063/5.0075285
[69] Pikovsky, A., Hierarchy of exact low-dimensional reductions for populations of coupled oscillators, Phys. Rev. Lett., 128, 054101, 2022 · doi:10.1103/PhysRevLett.128.054101
[70] Omel’chenko, O., Mathematical framework for breathing chimera states, J. Nonlin. Sci., 32, 1-34, 2022 · Zbl 1479.82025 · doi:10.1007/s00332-021-09760-y
[71] Bick, C.; Goodfellow, M.; Laing, C. R.; Martens, E. A., Understanding the dynamics of biological and neural oscillator networks through exact mean-field reductions: A review, J. Math. Neurosci., 10, 1-43, 2020 · Zbl 1448.92011 · doi:10.1186/s13408-020-00086-9
[72] Strogatz, S. H., Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, 2014, Westview Press
[73] Miron, A.; Reuveni, S., Diffusion with local resetting and exclusion, Phys. Rev. Res., 3, L012023, 2021 · doi:10.1103/PhysRevResearch.3.L012023
[74] Kalos, M. H.; Whitlock, P. A., Monte Carlo Methods, 2009, John Wiley & Sons
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.