×

Local convergence in a generalized Fermat-Weber problem. (English) Zbl 0787.90040

Summary: In the Fermat-Weber problem, the location of a source point in \({\mathbb{R}}^ N\) is sought which minimizes the sum of weighted Euclidean distances to a set of destinations. A classical iterative algorithm known as the Weiszfeld procedure is used to find the optimal location. Kuhn proves global convergence except for a denumerable set of starting points, while Katz provides local convergence results for this algorithm. In this paper, we consider a generalized version of the Fermat-Weber problem, where distances are measured by an \(l_ p\) norm and the parameter \(p\) takes on a value in the closed interval \([1,2]\). This permits the choice of a continuum of distance measures from rectangular \((p=1)\) to Euclidean \((p=2)\). An extended version of the Weiszfeld procedure is presented and local convergence results obtained for the generalized problem. Linear asymptotic convergence rates are typically observed. However, in special cases where the optimal solution occurs at a singular point of the iteration functions, this rate can vary from sublinear to quadratic. It is shown that for sufficiently large values of \(p\) exceeding 2, convergence of the Weiszfeld algorithm will not occur in general.

MSC:

90B85 Continuous location
Full Text: DOI

References:

[1] J. Brimberg, Properties of distance functions and minisum location models, Ph.D. Thesis, McMaster University, Hamilton, Canada (1989).
[2] A.V. Cabot, R.L. Francis and M.A. Stary, A network flow solution to a rectilinear distance facility location problem, AIIE Trans. 2(1970)132–141.
[3] R. Chandrasekaran and A. Tamir, Open questions concerning Weiszfeld’s algorithm for the Fermat-Weber location problem, Math. Progr. 44(1989)293–295. · Zbl 0683.90026 · doi:10.1007/BF01587094
[4] L. Cooper, Location-allocation problems, Oper. Res. 11(1963)37–52. · Zbl 0113.14201 · doi:10.1287/opre.11.3.331
[5] G. Dahlquist and Å. Björck,Numerical Methods, transl. by N. Anderson (Prentice-Hall, Englewood Cliffs, NJ, 1974).
[6] D.T. Finkbeiner,Elements of Linear Algebra (W.H. Freeman, San Francisco, CA, 1972).
[7] H. Juel and R.F. Love, Fixed point optimality criteria for the location problem with arbitrary norms, J. Oper. Res. Soc. 32(1981)891–897. · Zbl 0463.90035
[8] I.N. Katz, Local convergence in Fermat’s problem, Math. Progr. 6(1974)89–104. · Zbl 0291.90069 · doi:10.1007/BF01580224
[9] H.W. Kuhn, A note on Fermat’s problem, Math. Progr. 4(1973)98–107. · Zbl 0255.90063 · doi:10.1007/BF01584648
[10] H.W. Kuhn and R.E. Kuenne, An efficient algorithm for the numerical solution of the generalized Weber problem in spatial economics, J. Regional Sci. 4(1962)21–34. · doi:10.1111/j.1467-9787.1962.tb00902.x
[11] R.F. Love and J.G. Morris, Modelling inter-city road distances by mathematical functions, Oper. Res. Quarterly 23(1972)61–71. · Zbl 0231.90059 · doi:10.1057/jors.1972.6
[12] R.F. Love and J.G. Morris, Mathematical models of road travel distances, Manag. Sci. 25(1979)130–139. · Zbl 0419.90053 · doi:10.1287/mnsc.25.2.130
[13] R.F. Love, J.G. Morris and G.O. Wesolowsky,Facilities Location: Models and Methods (North-Holland, New York, 1988). · Zbl 0685.90036
[14] W. Miehle, Link-length minimization in networks, Oper. Res. 6(1958)232–243. · doi:10.1287/opre.6.2.232
[15] J.G. Morris, Analysis of generalized empirical ”distance” function for use in location problems,Int. Symp. on Locational Decisions, Banff, Alberta (1978).
[16] J.G. Morris, Convergence of the Weiszfeld algorithm for Weber problems using a generalized ”distance” function, Oper. Res. 29(1981)37–48. · Zbl 0452.90023 · doi:10.1287/opre.29.1.37
[17] J.G. Morris and W.A. Verdini, Minisuml p distance location problems solved via a perturbed problem and Weiszfeld’s algorithm, Oper. Res. 27(1979)1180–1188. · Zbl 0442.90023 · doi:10.1287/opre.27.6.1180
[18] J.M. Ortega and W.C. Rheinboldt,Iterative Solution of Nonlinear Equations in Several Variables (Academic Press, New York, 1970). · Zbl 0241.65046
[19] L.M. Ostresh, On the convergence of a class of iterative methods for solving the Weber location problem, Oper. Res. 26(1978)597–609. · Zbl 0396.90073 · doi:10.1287/opre.26.4.597
[20] J.-C. Picard and H.D. Ratliff, A cut approach to the rectilinear distance facility location problem, Oper. Res. 26(1978)422–433. · Zbl 0381.90090 · doi:10.1287/opre.26.3.422
[21] J.-F. Thisse, J.E. Ward and R.E. Wendell, Some properties of location problems with block and round norms, Oper. Res. 32(1984)1309–1327. · Zbl 0557.90023 · doi:10.1287/opre.32.6.1309
[22] E. Weiszfeld, Sur le point lequel la somme des distances den points donnés est minimum, Tohoku Math. J. 43(1937)355–386. · JFM 63.0583.01
[23] G.O. Wesolowsky and R.F. Love, The optimal location of new facilities using rectangular distances, Oper. Res. 19(1971)124–130. · Zbl 0216.54102 · doi:10.1287/opre.19.1.124
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.