×

Extreme points of convex fully symmetric sets of measurable operators. (English) Zbl 0787.46051

Let \(M\) be a semifinite non-atomic von Neumann algebra with a faithful semifinite normal trace \(\tau\). A subset \(W\) of \(L^ 1(M,\tau)+ M\) is called fully symmetric if for any \(x\in W\) there is a function \(f\) in \(L^ 1([0;\tau(1)[)+ L^ \infty([0;\tau(1)[)\) with the same non- increasing rearrangement. Let \(\widetilde W\) be the set of all functions that correspond to elements of \(W\) in the way described above. If \(W\) is convex, then \(x\) is an extreme point of \(W\) if and only if its rearrangement \(\mu(x)\) is an extreme point of \(\widetilde W\), and either \(\mu_ \infty(x)=0\) or the orthogonal complements of the left and right supports of \(x\) are centrally orthogonal and \(| x|\geq \mu_ \infty(x)r(x)\). This result can be applied to convex subsets of non- commutative Banach function spaces [see K. Watanabe, Hokkaido Math. J. 22, 349-364 (1993)].

MSC:

46L51 Noncommutative measure and integration
46L53 Noncommutative probability and statistics
46L54 Free probability and free operator algebras
Full Text: DOI

References:

[1] J. Arazy,On the geometry of the unit ball of unitary matrix spaces, Integral Equations and Operator Theory, 4(1981), 151-171. · Zbl 0459.47029 · doi:10.1007/BF01702378
[2] O. Bratelli and D. W. Robinson,Operator algebras and quantum statistical mechanics, I. Berlin-Heidelberg-New York, Springer, 1979.
[3] M. Sh. Braverman,On the geometric properties of the symmetric spaces, (Russian), Sib. Math. J., 15(1974), 675-679.
[4] A. P. Calderon,Spaces between L 1 and L ? and the theorem of Marcinkiewisz, Studia Math., 26(1966), 273-299.
[5] K. H. Chong and N. M. Rice,Equimeasurable rearrangements of functions, Queen’s papers pure and appl. math., 28(1971), 177 p. · Zbl 0275.46024
[6] P. G. Dodds, Th. K. Dodds and B. de Pagter,Non commutative Kothe duality, Reports of the Faculty of Technical Mathematics and Informatics no. 90-67. Delft 1990.
[7] T. Fack and H. Kosaki,Generalized s-numbers of ?-measurable operators, Pasific J. Math, 123(1986), 269-300. · Zbl 0617.46063
[8] D. H. Fremlin,Stable subspaces of L1+L?, Proc. Cambridge Philos. Soc. 64(1968), 625-643. · Zbl 0187.07302 · doi:10.1017/S0305004100043292
[9] I. C. Gohberg and M. G. Krein,Introduction to the theory of linear nonselfadjoint operators, A. M. S. Translations, Vol. 18. · Zbl 0181.13503
[10] F. Hiai,Majorization and stochastic maps in von Neumann algebras, J. Math. Anal. Appl., 127(1987), 18-48. · Zbl 0634.46051 · doi:10.1016/0022-247X(87)90138-7
[11] V. Kaftal and G. Weiss,Compact derivations relative to semifinite von Neumann algebras, J. Funct. Anal., 62(1985), 202-220. · Zbl 0578.46055 · doi:10.1016/0022-1236(85)90003-5
[12] S. G. Krein, Ju. I. Petunin, and E. M. Semenov,Interpolation of linear operators, A.M.S. Translations, 1982.
[13] E. Nelson,Notes on non-commutative integration, J. Funct. Anal., 15(1974), 103-116. · Zbl 0292.46030 · doi:10.1016/0022-1236(74)90014-7
[14] V. I. Ovchinnikov,Symmetric spaces of measurable operators, DAN SSSR, (Russian) 191(1970), vyp. 4, 769-771. · Zbl 0215.49103
[15] J. V. Ryff,Orbits of L 1 -functions under doubly stochastic transformations, Trans. Amer. Math. Soc., 117(1965), 92-100. · Zbl 0135.18804
[16] J. V. Ryff,Extreme points of some convex subsets of L 1 (0.1), Proc. Amer. Math. Soc., 18(1967), 1026-1034. · Zbl 0184.34503
[17] I. E. Segal,A non-commutative extension of abstract integration, Ann. Math., 57(1957). · Zbl 0078.29301
[18] Ph. A. Sukochev and V. I. Chilin,Triangle inequality for measurable operators relative to Hardy-Littlewood preorder (Russian), Izv. Acad. Nauk UzSSR, 4(1988), 44-50. · Zbl 0673.46044
[19] M. Takesaki,Theory of operator algebras I, New York, Springer, 415 p, (1979). · Zbl 0436.46043
[20] F. J. Yeadon,Non-commutative L p -spaces, Math. Proc. Phil. Soc., 77(1975), 91-102. · Zbl 0327.46068 · doi:10.1017/S0305004100049434
[21] F. J. Yeadon,Ergodic theorems for semifinite von Neumann algebras II, Math. Proc. Camb. Phil. Soc., 88(1980), 135-147. · Zbl 0466.46056 · doi:10.1017/S0305004100057418
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.