×

The initial value problem for the derivative nonlinear Schrödinger equation in the energy space. (English) Zbl 0787.35099

This paper is concerned with the Cauchy problem for the derivative nonlinear Schrödinger equation \[ i \psi_ t+\psi_{xx}+2i \delta(| \psi |^ 2 \psi)_ x=0,\;(t,x) \in \mathbb{R} \times \mathbb{R},\;\psi(0,x)=\varphi(x),\;x \in \mathbb{R} \] where \(\delta=\pm 1/2\).
The author proves the following: Theorem. Assume that \(\varphi(x) \in H^ 1(\mathbb{R})\) and \(\| \varphi \|_{L^ 2}\) is sufficiently small. Then there exists a unique global solution \(\psi(t,x)\) such that \[ \psi(t,x) \in C(\mathbb{R};H^ 1(\mathbb{R})) \cap L^{1,2}_{\text{loc}} (\mathbb{R};H^{1,3}(\mathbb{R})). \] (Here he uses the usual notation of Sobolev spaces and \(H^{m,p}(\mathbb{R})\) denotes the \(L^ p\) Sobolev space with regularity of order \(m\).)
This equation was derived to study the propagation of circular polarized nonlinear Alfven waves in plasma. It is remarked that the usual \(L^ p- L^ q\) estimates are not directly applicable to this problem which causes the usage of special Sobolev spaces.
Reviewer: A.Tsutsumi (Sakai)

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
76Y05 Quantum hydrodynamics and relativistic hydrodynamics
35A05 General existence and uniqueness theorems (PDE) (MSC2000)
Full Text: DOI

References:

[1] Mio, W.; Ogino, T.; Minami, K.; Takeda, S., Modified nonlinear Schrödinger equation for Alfven waves propagating along the magnetic field in cold plasmas, J. Phys. Soc. Japan, 41, 265-271 (1976) · Zbl 1334.76181
[2] Mjolhus, E., On the modulational instability of hydromagnetic waves parallel to the magnetic field, J. Plasma Phys., 16, 321-334 (1976)
[3] Tsutsumi, M.; Fukuda, I., On solutions of the derivative nonlinear Schrödinger equation. Existence and uniqueness theorem, Funkcialaj Ekvacioj, 23, 259-277 (1980) · Zbl 0478.35032
[4] Tsutsumi, M.; Fukuda, I., On solutions of the derivative nonlinear Schrödinger equation II, Funkcialaj Ekvacioj, 24, 85-94 (1981) · Zbl 0491.35016
[5] Kenig, C. E.; Ponce, G.; Vega, L., Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Am. math. Soc., 4, 323-347 (1991) · Zbl 0737.35102
[6] Weinstein, M. I., Nonlinear Schrödinger equations and sharp interpolation estimates, Communs Math. Phys, 87, 567-576 (1983) · Zbl 0527.35023
[7] Friedman, A., Partial Differential Equations (1969), Holt (Rinehart & Winston): Holt (Rinehart & Winston) New York · Zbl 0224.35002
[8] Ginibre, J.; Velo, G., Scattering theory in the energy space for a class of nonlinear Schrödinger equations, J. Math. pure appl., 64, 363-401 (1985) · Zbl 0535.35069
[9] Strichartz, R. S., Restriction of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke math. J., 44, 705-714 (1977) · Zbl 0372.35001
[10] Kaup, D. J.; Newell, A. C., An exact solution for a derivative nonlinear Schrödinger equation, J. Math. Phys., 19, 789-801 (1978) · Zbl 0383.35015
[11] Kundu, A., Landau-Lifshitz and higher-order nonlinear systems gauge generated from nonlinear Schödinger type equations, J. Math. Phys., 25, 3433-3438 (1984)
[12] Hayashi, N., Analyticity and smoothing effect of solutions to the derivative nonlinear Schrödinger equation (1991), unpublished manuscript
[13] Tsutsumi, Y., \(L^2\)-solutions for nonlinear Schrödinger equations and nonlinear groups, Funkcialaj Ekvacioj, 30, 115-125 (1987) · Zbl 0638.35021
[14] Hayashi, N.; Nakamitsu, K.; Tsutsumi, M., On solutions of the initial value problem for the nonlinear Schrödinger equations in one space dimension, Math. Z., 192, 637-650 (1986) · Zbl 0617.35025
[15] Lee, J. H., Global solvability of the derivative nonlinear Schrödinger equation, Trans. Am. math. Soc., 314, 107-118 (1989) · Zbl 0729.35130
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.