×

A hybrid variational-collocation immersed method for fluid-structure interaction using unstructured T-splines. (English) Zbl 07868662

Summary: We present a hybrid variational-collocation, immersed, and fully-implicit formulation for fluid-structure interaction (FSI) using unstructured T-splines. In our immersed methodology, we define an Eulerian mesh on the whole computational domain and a Lagrangian mesh on the solid domain, which moves arbitrarily on top of the Eulerian mesh. Mathematically, the problem reduces to solving three equations, namely, the linear momentum balance, mass conservation, and a condition of kinematic compatibility between the Lagrangian displacement and the Eulerian velocity. We use a weighted residual approach for the linear momentum and mass conservation equations, but we discretize directly the strong form of the kinematic relation, deriving a hybrid variational-collocation method. We use T-splines for both the spatial discretization and the information transfer between the Eulerian mesh and the Lagrangian mesh. T-splines offer us two main advantages against non-uniform rational B-splines: they can be locally refined and they are unstructured. The generalized-\(\alpha\) method is used for the time discretization. We validate our formulation with a common FSI benchmark problem achieving excellent agreement with the theoretical solution. An example involving a partially immersed solid is also solved. The numerical examples show how the use of T-junctions and extraordinary nodes results in an accurate, efficient, and flexible method.
{Copyright © 2015 John Wiley & Sons, Ltd.}

MSC:

74Sxx Numerical and other methods in solid mechanics
65Dxx Numerical approximation and computational geometry (primarily algorithms)
76Mxx Basic methods in fluid mechanics

Software:

PETSc
Full Text: DOI

References:

[1] HughesTJR, CottrellJA, BazilevsY. Isogeometric analysis CAD, finite elements, NURBS, exact geometry and mesh refinement. Computacional Methods in Applied Mechanics and Engineering2005; 194:4135-4195. · Zbl 1151.74419
[2] CottrellJA, HughesTJR, BazilevsY. Isogeometric Analysis Toward Integration of CAD and FEAWiley (ed.) (ed.). Wiley, 2009. · Zbl 1378.65009
[3] BazilevsY, CaloVM, HughesTJR, ZhangY. Isogeometric fluid‐structure interaction: theory, algorithms, and computations. Computational Mechanics2008; 43:3-37. · Zbl 1169.74015
[4] BazilevsY, CaloVM, ZhangY, HughesTJR. Isogeometric fluid‐structure interaction analysis with applications to arterial blood flow. Computational Mechanics2006; 38:310-322. · Zbl 1161.74020
[5] ZhangY, BazilevsY, GoswamiS, BajajCL, HughesTJR. Patient‐specific vascular NURBS modeling for isogeometric analysis of blood flow. Computer Methods in Applied Mechanics and Engineering2007; 196:2943-2959. · Zbl 1121.76076
[6] BuenoJ, Bona‐CasasC, BazilevsY, GomezH. Interaction of complex fluids and solids: theory, algorithms and application to phase‐change‐driven implosion. Computational Mechanics2015; 55(6):1105-1118. · Zbl 1325.76114
[7] KamenskyD, HsuMC, SchillingerD, EvansJA, AggarwalA, BazilevsY, SacksMS, HughesTJR. An immersogeometric variational framework for fluid‐structure interaction: application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering2015; 284:1005-1053. · Zbl 1423.74273
[8] CasqueroH, Bona‐CasasC, GomezH. A NURBS‐based immersed methodology for fluid‐structure interaction. Computer Methods in Applied Mechanics and Engineering2015; 284:943-970. · Zbl 1423.74261
[9] HsuMC, KamenskyD, BazilevsY, SacksM, HughesTJR. Fluid‐structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation. Computational Mechanics2014; 54:1055-1071English. · Zbl 1311.74039
[10] BazilevsY, CaloVM, CottrellJA, HughesTJR, RealiA, ScovazziG. Variational multiscale residual‐based turbulence modeling for large eddy simulation of incompressible flows. Computer Methods in Applied Mechanics and Engineering2007; 197:173-201. · Zbl 1169.76352
[11] EvansJA, HughesTJR. Isogeometric divergence‐conforming B‐splines for the unsteady Navier-Stokes equations. Journal of Computational Physics2013; 241:141-167. · Zbl 1349.76054
[12] GomezH, Cueto‐FelguerosoL, JuanesR. Three‐dimensional simulation of unstable gravity‐driven infiltration of water into a porous medium. Journal of Computational Physics2013; 238:217-239.
[13] GomezH, HughesTJR, NogueiraX, CaloVM. Isogeometric analysis of the isothermal Navier-Stokes-Korteweg equations. Computer Methods in Applied Mechanics and Engineering2010; 199:1828-1840. · Zbl 1231.76191
[14] LiuJu, GomezH, EvansJA, HughesTJR, LandisCM. Functional entropy variables: a new methodology for deriving thermodynamically consistent algorithms for complex fluids, with particular reference to the isothermal Navier-Stokes-Korteweg equations. Journal of Computational Physics2013; 248:47-86. · Zbl 1349.76237
[15] GomezH, NogueiraX. A new space-time discretization for the Swift-Hohenberg equation that strictly respects the Lyapunov functional. Communications in Nonlinear Science and Numerical Simulation2012; 17:4930-4946. · Zbl 1352.76109
[16] GomezH, CaloVM, BazilevsY, HughesTJR. Isogeometric analysis of the Cahn-Hilliard phase‐field model. Computacional Methods in Applied Mechanics and Engineering2008; 197:4333-4352. · Zbl 1194.74524
[17] GomezH, HughesTJR. Provably unconditionally stable, second‐order time‐accurate, mixed variational methods for phase‐field models. Journal of Computational Physics2011; 230:5310-5327. · Zbl 1419.76439
[18] GomezH, NogueiraX. An unconditionally energy‐stable method for the phase field crystal equation. Computer Methods in Applied Mechanics and Engineering2012; 249:52-61. · Zbl 1348.74280
[19] ThieleU, ArcherAJ, RobbinsMJ, GomezH, KnoblochE. Localized states in the conserved Swift-Hohenberg equation with cubic nonlinearity. Physical Review E2013; 87(4):042915.
[20] GomezH, ParísJ. Numerical simulation of asymptotic states of the damped Kuramoto-Sivashinsky equation. Physical Review E2011; 83:046702.
[21] VilanovaG, ColominasI, GomezH. Capillary networks in tumor angiogenesis: from discrete endothelial cells to phase‐field averaged descriptions via isogeometric analysis. International Journal for Numerical Methods in Biomedical Engineering2013; 29:1015-1037.
[22] VilanovaG, ColominasI, GomezH. Coupling of discrete random walks and continuous modeling for three‐dimensional tumor‐induced angiogenesis. Computational Mechanics2013; 53:449-464.
[23] CottrellJA, RealiA, BazilevsY, HughesTJR. Isogeometric analysis of structural vibrations. Computer Methods in Applied Mechanics and Engineering2006; 195:5257-5296. · Zbl 1119.74024
[24] HughesTJR, RealiA, SangalliG. Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: comparison of p‐method finite elements with k‐method NURBS. Computer Methods in Applied Mechanics and Engineering2008; 197:4104-4124. · Zbl 1194.74114
[25] LiptonS, EvansJA, BazilevsY, ElguedjT, HughesTJR. Robustness of isogeometric structural discretizations under severe mesh distortion. Computer Methods in Applied Mechanics and Engineering2010; 199:357-373. · Zbl 1227.74112
[26] ElguedjT, BazilevsY, CaloVM, HughesTJRH. \( \overline{B}\) and \(\overline{F}\) projection methods for nearly incompressible linear and non‐linear elasticity and plasticity using higher‐order NURBS elements. Computer Methods in Applied Mechanics and Engineering2008; 197:2732-2762. · Zbl 1194.74518
[27] DhoteRP, GomezH, MelnikRNV, ZuJ. Isogeometric analysis of a dynamic thermo‐mechanical phase‐field model applied to shape memory alloys. Computational Mechanics2013; 53:1235-1250. · Zbl 1398.74322
[28] DhoteRP, GomezH, MelnikRNV, ZuJ. Shape memory alloy nanostructures with coupled dynamic thermo‐mechanical effects. Computer Physics Communications2015; 192:48-53.
[29] DhoteRP, GomezH, MelnikRNV, ZuJ. 3D coupled thermo‐mechanical phase‐field modeling of shape memory alloy dynamics via isogeometric analysis. Computers & Structures2015; 154:48-58.
[30] KiendlJ, BletzingerKU, LinhardJ, WuchnerR. Isogeometric shell analysis with Kirchhoff-Love elements. Computer Methods in Applied Mechanics and Engineering2009; 198:3902-3914. · Zbl 1231.74422
[31] KiendlJ, BazilevsY, HsuMC, WüchnerR, BletzingerKU. The bending strip method for isogeometric analysis of Kirchhoff-Love shell structures comprised of multiple patches. Computer Methods in Applied Mechanics and Engineering2010; 199:2403-2416. · Zbl 1231.74482
[32] Nguyen‐ThanhN, KiendlJ, Nguyen‐XuanH, WuchnerR, BletzingerKU, BazilevsY, RabczukT. Rotation free isogeometric thin shell analysis using PHT‐splines. Computer Methods in Applied Mechanics and Engineering2011; 200:3410-3424. · Zbl 1230.74230
[33] KiendlJ, HsuMC, WuMCH, RealiA. Isogeometric Kirchhoff-Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering2015; 291:280-303. · Zbl 1423.74177
[34] De LorenzisL, TemizerI, WriggersP, ZavariseG. A large deformation frictional contact formulation using NURBS‐based isogeometric analysis. International Journal for Numerical Methods in Engineering2011; 87:1278-1300. · Zbl 1242.74104
[35] DimitriR, De LorenzisL, ScottMA, WriggersP, TaylorRL, ZavariseG. Isogeometric large deformation frictionless contact using T‐splines. Computer Methods in Applied Mechanics and Engineering2014; 269:394-414. · Zbl 1296.74071
[36] DimitriR, De LorenzisL, WriggersP, ZavariseG. NURBS‐and T‐spline‐based isogeometric cohesive zone modeling of interface debonding. Computational Mechanics2014; 54:369-388. · Zbl 1398.74323
[37] SederberTW, ZhengJ, BakenovA, NasriA. T‐splines and T‐NURCCs. ACM Transactions on Graphics2003; 22:477-484.
[38] ZhangY, WangW, HughesTJR. Solid T‐spline construction from boundary representations for genus‐zero geometry. Computer Methods in Applied Mechanics and Engineering2012; 249‐252:185-197. · Zbl 1348.65057
[39] ZhangY, WangW, HughesTJRH. Conformal solid T‐spline construction from boundary T‐spline representations. Computational Mechanics2013; 51:1051-1059. · Zbl 1367.65024
[40] WangW, ZhangY, LiuL, HughesTJR. Trivariate solid T‐spline construction from boundary triangulations with arbitrary genus topology. Computer‐Aided Design2013; 45(2):351-360.
[41] LiuL, ZhangY, HughesTJR, ScottMA, SederbergTW. Volumetric T‐spline construction using boolean operations. Engineering with Computers2014; 30:425-439.
[42] LiuL, ZhangY, LiuY, WangW. Feature‐preserving t‐mesh construction using skeleton‐based polycubes. Computer‐Aided Design2015; 58:162-172.
[43] BazilevsY, CaloVM, CottrellJA, EvansJA, HughesTJR, LiptonS, ScottMA, SederbergTW. Isogeometric analysis using T‐splines. Computer Methods in Applied Mechanics and Engineering2010; 199:229-263. · Zbl 1227.74123
[44] LiX, ZhengJ, SederbergTW, HughesTJR, ScottMA. On linear independence of T‐spline blending functions. Computer Aided Geometric Design2012; 29:63-76. · Zbl 1251.65012
[45] ScottMA, SimpsonRN, EvansJA, LiptonS, BordasSPA, HughesTJR, SederbergTW. Isogeometric boundary element analysis using unstructured T‐splines. Computer Methods in Applied Mechanics and Engineering2013; 254:197-221. · Zbl 1297.74156
[46] ScottMA, BordenMJ, VerhooselCV, SederbergTW, HughesTJR. Isogeometric finite element data structures based on Bézier extraction of T‐splines. International Journal for Numerical Methods in Engineering2011; 88:126-156. · Zbl 1242.65243
[47] BordenMJ, ScottMA, EvansJA, HughesTJR. Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering2011; 87(1‐5):15-47. · Zbl 1242.74097
[48] ScottMA, LiX, SederbergTW, HughesTJR. Local refinement of analysis‐suitable T‐splines. Computer Methods in Applied Mechanics and Engineering2012; 213‐216:206-222. · Zbl 1243.65030
[49] WangW, ZhangY, ScottMA, HughesTJR. Converting an unstructured quadrilateral mesh to a standard T‐spline surface. Computational Mechanics2011; 48:477-498. · Zbl 1248.65024
[50] LiuL, ZhangYJ, WeiX. Weighted T‐splines with application in reparameterizing trimmed NURBS surfaces. Computer Methods in Applied Mechanics and Engineering2015; 295:108-126. · Zbl 1423.74904
[51] EvansEJ, ScottMA, LiX, ThomasDC. Hierarchical T‐splines: analysis‐suitability, Bézier extraction, and application as an adaptive basis for isogeometric analysis. Computer Methods in Applied Mechanics and Engineering2015; 284:1-20. · Zbl 1425.65025
[52] AuricchioF, Da VeigaLB, HughesTJR, RealiA, SangalliG. Isogeometric collocation methods. Mathematical Models and Methods in Applied Sciences2010; 20:2075-2107. · Zbl 1226.65091
[53] GomezH, RealiA, SangalliG. Accurate, efficient, and (iso)geometrically flexible collocation methods for phase‐field models. Journal of Computational Physics2014; 262:153-171. · Zbl 1349.82084
[54] SchillingerD, EvansJA, RealiA, ScottMA, HughesTJR. Isogeometric collocation: cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations. Computer Methods in Applied Mechanics and Engineering2013; 267:170-232. · Zbl 1286.65174
[55] RealiA, GomezH. An isogeometric collocation approach for Bernoulli-Euler beams and Kirchhoff plates. Computer Methods in Applied Mechanics and Engineering2015; 284:623-636. · Zbl 1423.74553
[56] CasqueroH, LeiL, ZhangJ, RealiA, GomezH. Isogeometric collocation using analysis‐suitable T‐splines of arbitrary degree, 2015. submitted for publication.
[57] BordenMJ, VerhooselCV, ScottMA, HughesTJR, LandisCM. A phase‐field description of dynamic brittle fracture. Computer Methods in Applied Mechanics and Engineering2012; 217‐220:77-95. · Zbl 1253.74089
[58] VerhooselCV, ScottMA, deBorstR, HughesTJR. An isogeometric approach to cohesive zone modeling. International Journal for Numerical Methods in Engineering2011; 87:336-360. · Zbl 1242.74169
[59] VerhooselCV, ScottMA, HughesTJR, deBorstR. An isogeometric analysis approach to gradient damage models. International Journal for Numerical Methods in Engineering2011; 86:115-134. · Zbl 1235.74320
[60] DimitriR, LorenzisLD, ScottMA, WriggersP, TaylorRL, ZavariseG. Isogeometric large deformation frictionless contact using T‐splines. Computer Methods in Applied Mechanics and Engineering2014; 269:394-414. · Zbl 1296.74071
[61] SimpsonRN, ScottMA, TausM, ThomasDC, LianH. Acoustic isogeometric boundary element analysis. Computer Methods in Applied Mechanics and Engineering2014; 269:265-290. · Zbl 1296.65175
[62] BazilevsY, HsuMC, ScottMA. Isogeometric fluid‐structure interaction analysis with emphasis on non‐matching discretizations, and with application to wind turbines. Computer Methods in Applied Mechanics and Engineering2012; 249‐252:28-41. · Zbl 1348.74094
[63] HughesTJR, LiuWK, ZimmermannTK. Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Computer methods in applied mechanics and engineering1981; 29:329-349. · Zbl 0482.76039
[64] BazilevsY, HsuMC, ZhangY, WangW, KvamsdalT, HentschelS, IsaksenJG. Computational vascular fluid‐structure interaction: methodology and application to cerebral aneurysms. Biomechanics and Modeling in Mechanobiology2010; 9:481-498.
[65] BazilevsY, GoheanJR, HughesTJR, MoserRD, ZhangY. Patient‐specific isogeometric fluid‐structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Computer Methods in Applied Mechanics and Engineering2009; 198:3534-3550. · Zbl 1229.74096
[66] IsaksenJG, BazilevsYuri, KvamsdalT, ZhangY, KaspersenJH, WaterlooK, RomnerB, IngebrigtsenT. Determination of wall tension in cerebral artery aneurysms by numerical simulation. Stroke2008; 39:3172-3178.
[67] BazilevsY, HsuMC, ZhangY, WangW, LiangX, KvamsdalT, BrekkenR, IsaksenJG. A fully‐coupled fluid‐structure interaction simulation of cerebral aneurysms. Computational Mechanics2010; 46:3-16. · Zbl 1301.92014
[68] ZhangY, WangW, LiangX, BazilevsY, HsuMC, KvamsdalT, BrekkenR, IsaksenJ. High‐fidelity tetrahedral mesh generation from medical imaging data for fluid‐structure interaction analysis of cerebral aneurysms. Computer Modeling in Engineering and Sciences (CMES)2009; 42:131-150.
[69] BazilevsY, HsuMC, AkkermanI, WrightS, TakizawaK, HenickeB, SpielmanT, TezduyarTE. 3D simulation of wind turbine rotors at full scale. Part I: geometry modeling and aerodynamics. International Journal for Numerical Methods in Fluids2011; 65:207-235. · Zbl 1428.76086
[70] BazilevsY, HsuMC, KiendlJ, WuchnerR, BletzingerKU. 3D simulation of wind turbine rotors at full scale. Part ii: fluid‐structure interaction modeling with composite blades. International Journal for Numerical Methods in Fluids2011; 65:236-253. · Zbl 1428.76087
[71] FarhatC, van derZeeKG, GeuzaineP. Provably second‐order time‐accurate loosely‐coupled solution algorithms for transient nonlinear computational aeroelasticity. Computer methods in applied mechanics and engineering2006; 195:1973-2001. · Zbl 1178.76259
[72] TezduyarTE, TakizawaK, MoormanC, WrightS, ChristopherJ. Space‐time finite element computation of complex fluid‐structure interactions. International Journal for Numerical Methods in Fluids2010; 64:1201-1218. · Zbl 1427.76148
[73] vanBrummelenEH, van derZeeKG, deBorstR. Space/time multigrid for a fluid‐structure‐interaction problem. Applied Numerical Mathematics2008; 58:1951-1971. · Zbl 1148.74046
[74] BazilevsY, TakizawaK, TezduyarTE. Computational Fluid‐structure Interaction: Methods and Applications. John Wiley & Sons, 2012.
[75] PeskinCS. Flow patterns around heart valves: a numerical method. Journal of Computational Physics1972; 10:252-271. · Zbl 0244.92002
[76] McQueenDM, PeskinCS. Computer‐assisted design of butterfly bileaflet valves for the mitral position. Scandinavian Journal of Thoracic and Cardiovascular Surgery1985; 19:139-148.
[77] BeyerJr.RP. A computational model of the cochlea using the immersed boundary method. Journal of Computational Physics1992; 98:145-162. · Zbl 0744.76128
[78] DillonR, FauciL, FogelsonA, GaverIIID. Modeling biofilm processes using the immersed boundary method. Journal of Computational Physics1996; 129:57-73. · Zbl 0867.76100
[79] GilAJ, CarreñoAA, BonetJ, HassanO. The immersed structural potential method for haemodynamic applications. Journal of Computational Physics2010; 229(22):8613-8641. · Zbl 1198.92010
[80] MountrakisL, LorenzE, HoekstraAG. Where do the platelets go? A simulation study of fully resolved blood flow through aneurysmal vessels. Interface focus2013; 3(2):20120089.
[81] MountrakisL, LorenzE, MalaspinasO, AlowayyedS, ChopardB, HoekstraAG. Parallel performance of an IB‐LBM suspension simulation framework. Journal of Computational Science2015; 9:45-50.
[82] ZhangL, GerstenbergerA, WangX, LiuWK. Immersed finite element method. Computer Methods in Applied Mechanics and Engineering2004; 193:2051-2067. · Zbl 1067.76576
[83] LiuWK, LiuY, FarrellD, ZhangL, WangXS, FukuiY, PatankarN, ZhangY, BajajC, LeeJ, HongJ, ChenX, HsuH. Immersed finite element method and its applications to biological systems. Computer Methods in Applied Mechanics and Engineering2006; 195:1722-1749. · Zbl 1178.76232
[84] GayM, ZhangL, LiuWK. Stent modeling using immersed finite element method. Computer Methods in Applied Mechanics and Engineering2006; 195:4358-4370. · Zbl 1175.74081
[85] ChungJ, HulbertGM. A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized‐Îś method.Journal of Applied Mechanics1993; 60:371-375. · Zbl 0775.73337
[86] JansenKE, WhitingCH, HulbertGM. Generalized‐α method for integrating the filtered Navier-Stokes equations with a stabilized finite element method. Computer Methods in Applied Mechanics and Engineering2000; 190:305-319. · Zbl 0973.76048
[87] Beirao da VeigaL, BuffaA, SangalliG, VÃązquezR. Analysis suitable T‐splines of arbitrary degree: definition, linear independence, and approximation properties. Mathematical Models and Methods in Applied Sciences2013; 23:1979-2003. · Zbl 1270.65009
[88] Beirao da VeigaL, BuffaA, ChoD, SangalliG. Analysis‐suitable T‐splines are dual‐compatible. Computer Methods in Applied Mechanics and Engineering2012; 249252(0):42-51. Higher Order Finite Element and Isogeometric Methods. · Zbl 1348.65048
[89] ZienkiewiczOC, TaylorRL, ZienkiewiczOC, TaylorRL. The Finite Element Method. McGraw‐hill London, 1977. · Zbl 0435.73072
[90] HughesTJR. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis 2000;Cited By (since 1996)1023.
[91] De BoorC. A practical guide to splines. Mathematics of Computation1978. · Zbl 0406.41003
[92] MarsdenJE, HughesTJR. Mathematical Foundations of Elasticity. Courier Dover Publications: Springer‐Verlag New York, 1994.
[93] HeschC, GilAJ, ArranzCA, BonetJ. On continuum immersed strategies for fluid‐structure interaction. Computer Methods in Applied Mechanics and Engineering2012; 247‐248:51-64. · Zbl 1352.76055
[94] SimoJC, HughesTJR. Computational Inelasticity. Springer: New York, 2008.
[95] HeschC, GilAJ, CarreñoAA, BonetJ, BetschP. A mortar approach for fluid‐structure interaction problems: immersed strategies for deformable and rigid bodies. Computer Methods in Applied Mechanics and Engineering2014; 278:853-882. · Zbl 1423.74889
[96] BalayS, AdamsMF, BrownJ, BruneP, BuschelmanK, EijkhoutV, GroppWD, KaushikD, KnepleyMG, McInnesLC, RuppK, SmithBF, ZhangH. PETSc Web page, 2014. (Available from: http://www.mcs.anl.gov/petsc).
[97] BoffiD, CavalliniN, GastaldiL. The finite element immersed boundary method with distributed Lagrange multiplier. arXiv preprint arXiv:1407.51842014.
[98] AuricchioF, BoffiD, GastaldiL, LefieuxA, RealiA. On a fictitious domain method with distributed Lagrange multiplier for interface problems. Applied Numerical Mathematics2014; 95:36-50. · Zbl 1320.65166
[99] AuricchioF, BoffiD, GastaldiL, LefieuxA, RealiA. A study on unfitted 1d finite element methods. Computers & Mathematics with Applications2014; 68(12):2080-2102. · Zbl 1369.65095
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.