×

Exact global control of small divisors in rational normal form. (English) Zbl 07867523

Summary: Rational normal form is a powerful tool to deal with Hamiltonian partial differential equations without external parameters. In this paper, we build rational normal form with exact global control of small divisors. As an application to nonlinear Schrödinger equations in Gevrey spaces, we prove sub-exponentially long time stability results for generic small initial data.
{© 2024 IOP Publishing Ltd & London Mathematical Society}

MSC:

37K55 Perturbations, KAM theory for infinite-dimensional Hamiltonian and Lagrangian systems
37K45 Stability problems for infinite-dimensional Hamiltonian and Lagrangian systems
35B40 Asymptotic behavior of solutions to PDEs
35Q55 NLS equations (nonlinear Schrödinger equations)

References:

[1] Bambusi, D., Nekhoroshev theorem for small amplitude solutions in nonlinear Schrödinger equations, Math. Z., 230, 345-87, 1999 · Zbl 0928.35160 · doi:10.1007/PL00004696
[2] Bambusi, D., Birkhoff normal form for some nonlinear PDEs, Commun. Math. Phys., 234, 253-85, 2003 · Zbl 1032.37051 · doi:10.1007/s00220-002-0774-4
[3] Bambusi, D., A Birkhoff normal form theorem for some semilinear PDEs, Hamiltonian Dynamical Systems and Applications (Nato Science for Peace and Security Series B: Physics and Biophysics), 213-47, 2008, Springer · Zbl 1145.37038 · doi:10.1007/978-1-4020-6964-2_11
[4] Berti, M.; Delort, J-M, Almost Global Solutions of Capillary-Gravity Water Waves Equations on the Circle (Lecture Notes of the Unione Matematica Italiana vol 24), 2018, Springer · Zbl 1409.35002 · doi:10.1007/978-3-319-99486-4
[5] Bambusi, D.; Delort, J-M; Grébert, B.; Szeftel, J., Almost global existence for Hamiltonian semilinear Klein-Gordon equations with small Cauchy data on Zoll manifolds, Commun. Pure Appl. Math., 60, 1665-90, 2007 · Zbl 1170.35481 · doi:10.1002/cpa.20181
[6] Bernier, J.; Faou, E.; Grébert, B., Long time behavior of the solutions of NLW on the d-dimensional torus, Forum Math. Sigma, 8, 12-26, 2020 · Zbl 1441.35169 · doi:10.1017/fms.2020.8
[7] Bernier, J.; Faou, E.; Grébert, B., Rational normal forms and stability of small solutions to nonlinear Schrödinger equations, Ann. PDE, 6, 14, 2020 · Zbl 1475.37080 · doi:10.1007/s40818-020-00089-5
[8] Bambusi, D.; Grébert, B., Birkhoff normal form for partial differential equations with tame modulus, Duke Math. J., 135, 507-67, 2006 · Zbl 1110.37057 · doi:10.1215/S0012-7094-06-13534-2
[9] Bernier, J.; Camps, N.; Grébert, B.; Wang, Z., Exponential stability of solutions to the Schrödinger-Poisson equation, 2023
[10] Bernier, J.; Grébert, B., Long time dynamics for generalized Korteweg-de Vries and Benjamin-Ono equations, Arch. Ration. Mech. Anal., 241, 1139-241, 2021 · Zbl 1476.37083 · doi:10.1007/s00205-021-01666-z
[11] Biasco, L.; Massetti, J. E.; Procesi, M., An abstract Birkhoff normal form theorem and exponential type stability of the 1d NLS, Commun. Math. Phys., 375, 2089-153, 2020 · Zbl 1441.35217 · doi:10.1007/s00220-019-03618-x
[12] Bambusi, D.; Maiocchi, A.; Turri, L., A large probability averaging theorem for the defocusing NLS, Nonlinearity, 32, 3661-94, 2019 · Zbl 1425.37045 · doi:10.1088/1361-6544/ab17e8
[13] Bourgain, J., Construction of approximative and almost periodic solutions of perturbed linear Schrödinger and wave equations, Geom. Funct. Anal., 6, 201-30, 1996 · Zbl 0872.35007 · doi:10.1007/BF02247885
[14] Bourgain, J., On diffusion in high-dimensional Hamiltonian systems and PDE, J. Anal. Math., 80, 1-35, 2000 · Zbl 0964.35143 · doi:10.1007/BF02791532
[15] Chen, Q.; Cong, H.; Meng, L.; Wu, X., Long time stability result for 1-dimensional nonlinear Schrödinger equation, J. Differ. Equ., 315, 90-121, 2022 · Zbl 1490.37091 · doi:10.1016/j.jde.2022.01.032
[16] Cong, H.; Liu, J.; Shi, Y.; Yuan, X., The stability of full dimensional KAM tori for nonlinear Schrödinger equation, J. Differ. Equ., 264, 4504-63, 2018 · Zbl 1382.37079 · doi:10.1016/j.jde.2017.12.013
[17] Cong, H.; Liu, C.; Wang, P., A Nekhoroshev type theorem for the nonlinear wave equation, J. Differ. Equ., 269, 3853-89, 2020 · Zbl 1444.37058 · doi:10.1016/j.jde.2020.03.015
[18] Cong, H.; Liu, J.; Yuan, X., Stability of KAM Tori for Nonlinear SchröDinger equation, vol 239, p vii+85, 2016, Memoirs of the American Mathematical Society · Zbl 1343.37074 · doi:10.1090/memo/1134
[19] Cong, H.; Mi, L.; Wang, P., A Nekhoroshev type theorem for the derivative nonlinear Schrödinger equation, J. Differ. Equ., 268, 5207-56, 2020 · Zbl 1437.37099 · doi:10.1016/j.jde.2019.11.005
[20] Cong, H.; Mi, L.; Wu, X.; Zhang, Q., Exponential stability estimate for the derivative nonlinear Schrödinger equation, Nonlinearity, 35, 2385-423, 2022 · Zbl 1504.37081 · doi:10.1088/1361-6544/ac5c66
[21] Delort, J-M, A quasi-linear Birkhoff normal forms method. Application to the quasi-linear Klein-Gordon equation on \(\mathbb{S}^1\), Astérisque, vi+113, 2012 · Zbl 1243.35123
[22] Delort, J-M, Quasi-Linear Perturbations of Hamiltonian Klein-Gordon Equations on Spheres, vol 234, p vi+80, 2015, Memoirs of the American Mathematical Society · Zbl 1315.35003 · doi:10.1090/memo/1103
[23] Faou, E.; Grébert, B., A Nekhoroshev-type theorem for the nonlinear Schrödinger equation on the torus, Anal. PDE, 6, 1243-62, 2013 · Zbl 1284.35067 · doi:10.2140/apde.2013.6.1243
[24] Grébert, B.; Imekraz, R.; Paturel, E., Normal forms for semilinear quantum harmonic oscillators, Commun. Math. Phys., 291, 763-98, 2009 · Zbl 1185.81073 · doi:10.1007/s00220-009-0800-x
[25] Kuksin, S.; Pöschel, J., Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation, Ann. Math., 143, 149-79, 1996 · Zbl 0847.35130 · doi:10.2307/2118656
[26] Kukush, A., Gaussian Measures in Hilbert Space, 2019, Wiley · Zbl 1432.62004 · doi:10.1002/9781119476825
[27] Yuan, X.; Zhang, J., Long time stability of Hamiltonian partial differential equations, SIAM J. Math. Anal., 46, 3176-222, 2014 · Zbl 1405.37085 · doi:10.1137/120900976
[28] Zhang, Q., Long-time existence for semi-linear Klein-Gordon equations with quadratic potential, Commun. PDE, 35, 630-68, 2010 · Zbl 1201.35145 · doi:10.1080/03605300903509112
[29] Zhang, J., Almost global solutions to Hamiltonian derivative nonlinear Schrödinger equations on the circle, J. Dyn. Differ. Equ., 32, 1401-55, 2020 · Zbl 1448.37090 · doi:10.1007/s10884-019-09773-y
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.