×

Effect of magnetic induction on the synchronizability of coupled neuron network. (English) Zbl 07866673


MSC:

92B20 Neural networks for/in biological studies, artificial life and related topics
92C20 Neural biology
37N25 Dynamical systems in biology
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
Full Text: DOI

References:

[1] Hodgkin, A. L.; Huxley, A. F., Quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol., 117, 4, 500-544, 1952 · doi:10.1113/jphysiol.1952.sp004764
[2] Hindmarsh, J.; Rose, R., A model of the nerve impulse using two first-order differential equations, Nature, 296, 5853, 162-164, 1982 · doi:10.1038/296162a0
[3] FitzHugh, R., Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., 1, 6, 445-466, 1961 · doi:10.1016/S0006-3495(61)86902-6
[4] Nagumo, J.; Arimoto, S.; Yoshizawa, S., An active pulse transmission line simulating nerve axon, Proc. IRE, 50, 10, 2061-2070, 1962 · doi:10.1109/JRPROC.1962.288235
[5] Izhikevich, E. M., Neural excitability, spiking and bursting, Int. J. Bifurcation Chaos, 10, 1171-1266, 2000 · Zbl 1090.92505 · doi:10.1142/S0218127400000840
[6] Pecora, L. M.; Carroll, T. L., Synchronization of chaotic systems, Phys. Rev. Lett., 64, 8, 821-830, 1990 · Zbl 0938.37019 · doi:10.1103/PhysRevLett.64.821
[7] Rajagopal, K.; Tuna, M.; Karthikeyan, A.; Koyuncu, I.; Duraisamy, P.; Akgul, A., Dynamical analysis, sliding mode synchronization of a fractional order memristor Hopfield neural network with parameter uncertainties and its non-fractional order FPGA implementation, Eur. Phys. J. Spec. Top., 228, 2065-2080, 2019 · doi:10.1140/epjst/e2019-900005-8
[8] Rajagopal, K.; Khalaf, A. J. M.; Parastesh, F.; Moroz, I.; Karthikeyan, A.; Jafari, S., Dynamical behavior and network analysis of an extended Hindmarsh-Rose neuron model, Nonlinear Dyn., 98, 477, 2019 · Zbl 1430.92006 · doi:10.1007/s11071-019-05205-0
[9] Rajagopal, K.; Nazarimehr, F.; Karthikeyan, A.; Alsaedi, A.; Hayat, T.; Pham, V.-T., Dynamics of a neuron exposed to integer order and fractional order discontinuous external magnetic flux, Front. Inf. Technol. Electron. Eng., 20, 584, 2019 · doi:10.1631/FITEE.1800389
[10] Rajagopal, K.; Parastesh, F.; Azarnoush, H.; Hatef, B.; Jafari, S.; Berec, V., Spiral waves in externally excited neuronal network: Solvable model with a monotonically differentiable magnetic flux, Chaos, 29, 4, 043109, 2019 · Zbl 1412.92003 · doi:10.1063/1.5088654
[11] Rajagopal, K.; Weldegiorgis, R.; Karthikeyan, A.; Duraisamy, P.; Tadesse, G., No chattering and adaptive sliding mode control of fractional order phase converter with disturbances and parameter uncertainties, Complexity, 2018, 5873230 · Zbl 1407.93175 · doi:10.1155/2018/5873230
[12] Chen, B.; Rajagopal, K.; Parastesh, F.; Azarnoush, H.; Jafari, S.; Hussain, I., Observation of chimera patterns in a network of symmetric chaotic finance systems, Commun. Theor. Phys., 72, 105003, 2020 · doi:10.1088/1572-9494/aba261
[13] Parastesh, F.; Rajagopal, K.; Alsaadi, F. E.; Hayat, T.; Pham, V. T.; Hussain, I., Birth and death of spiral waves in a network of Hindmarsh-Rose neurons with exponential magnetic flux and excitable media, Appl. Math. Comput., 354, 377-384, 2019 · Zbl 1428.92012 · doi:10.1016/j.amc.2019.02.041
[14] Karthikeyan, R.; Zhouchao, W.; Irene, M.; Anitha, K.; Prakash, D., Elimination of spiral waves in a one-layer and two-layer network of pancreatic beta cells using a periodic stimuli, Chaos, Solitons Fractals, 139, 110093, 2020 · Zbl 1490.92024 · doi:10.1016/j.chaos.2020.110093
[15] Rajagopal, K.; Khalaf, A. J. M.; Parastesh, F.; Moroz, I.; Karthikeyan, A.; Jafari, S., Dynamical behavior and network analysis of an extended Hindmarsh-Rose neuron model, Nonlinear Dyn., 98, 477, 2019 · Zbl 1430.92006 · doi:10.1007/s11071-019-05205-0
[16] Fenton, F. H.; Cherry, E. M.; Hastings, H. M.; Evans, S. J., Multiple mechanisms of spiral wave breakup in a model of cardiac electrical activity, Chaos, 12, 852, 2002 · doi:10.1063/1.1504242
[17] Perez-Munuzuri, V.; Munuzuri, A. P.; Gomez Gezteira, M.; Perez-Villar, V.; Pivka, L.; Chua, L. O., Nonlinear waves, patterns and spatiotemporal chaos in cellular neural network, Philos. Trans. R. Soc. London A, 353, 101-113, 1995 · Zbl 0868.58072 · doi:10.1098/rsta.1995.0093
[18] Jun, M.; Tang, J.; Zhang, A.; Jia, Y., Robustness and breakup of the spiral wave in a two-dimensional lattice network of neurons, Sci. China Phys. Mech. Astron., 53, 672-679, 2010 · doi:10.1007/s11433-010-0097-y
[19] Shima, S.; Kuramoto, Y., Rotating spiral waves with phase-randomized core in nonlocally coupled oscillators, Phys. Rev. E, 69, 036213, 2004 · doi:10.1103/PhysRevE.69.036213
[20] Kuramoto, Y.; Shima, S., Rotating spirals without phase singularity in reaction-diffusion systems, Prog. Theor. Phys. Suppl., 150, 115, 2003 · doi:10.1143/PTPS.150.115
[21] Rostami, Z.; Pham, V. T.; Jafari, S.; Hadaeghi, F.; Jun, M., Taking control of initiated propagating wave in a neuronal network using magnetic radiation, Appl. Math. Comput., 338, 141-151, 2018 · Zbl 1427.92012 · doi:10.1016/j.amc.2018.06.004
[22] Rajagopal, K.; Moroz, I.; Karthikeyan, A.; Duraisamy, P., Wave propagation in a network of extended Morris-Lecar neurons with electromagnetic induction and its local kinetics, Nonlinear Dyn., 100, 3625-3644, 2020 · doi:10.1007/s11071-020-05643-1
[23] Bera, B. K.; Majhi, S.; Ghosh, D., Chimera states: Effects of different coupling topologies, Europhys. Lett., 118, 10001, 2017 · doi:10.1209/0295-5075/118/10001
[24] Qin, H.; Ma, J.; Ren, G.; Zhou, P., Field coupling-induced wave propagation and pattern stability in a two-layer neuronal network under noise, Int. J. Mod. Phys. B, 32, 27, 1850298, 2018 · Zbl 1423.92028 · doi:10.1142/S0217979218502983
[25] Ma, J.; Mi, L.; Zhou, P.; Xu, Y.; Hayat, T., Phase synchronization between two neurons induced by coupling of electromagnetic field, Appl. Math. Comput., 307, 321-328, 2017 · Zbl 1411.92049 · doi:10.1016/j.amc.2017.03.002
[26] Shafiei, M.; Jafari, S.; Parastesh, F.; Ozer, M.; Kapitaniak, T.; Perc, M., Time delayed chemical synapses and synchronization in multilayer neuronal networks with ephaptic inter-layer coupling, Commun. Nonlinear Sci. Numer. Simul., 84, 105175, 2020 · Zbl 1451.92030 · doi:10.1016/j.cnsns.2020.105175
[27] Ashwin, P.; Buescu, J.; Stewart, I., Bubbling of attractors and synchronisation of chaotic oscillators, Phys. Lett. A, 193, 2, 126-139, 1994 · Zbl 0959.37508 · doi:10.1016/0375-9601(94)90947-4
[28] Pecora, L. M.; Carroll, T. L., Master stability functions for synchronized coupled systems, Phys. Rev. Lett., 80, 10, 2109, 1998 · doi:10.1103/PhysRevLett.80.2109
[29] Panahi, S.; Jafari, S., A fast technique for calculating master stability function, Int. J. Mod. Phys. B, 34, 5, 2050024, 2020 · doi:10.1142/S0217979220500241
[30] Sun, J.; Bollt, E. M.; Nishikawa, T., Master stability functions for coupled nearly identical dynamical systems, Europhys. Lett., 85, 60011, 2009 · doi:10.1209/0295-5075/85/60011
[31] Russo, G.; di Bernardo, M., Contraction theory and master stability function: Linking two approaches to study synchronization of complex networks, IEEE Trans. Circuits Syst. II: Express Briefs, 56, 2, 177-181, 2009 · doi:10.1109/TCSII.2008.2011611
[32] Coombes, S.; Thul, R., Synchrony in networks of coupled non-smooth dynamical systems: Extending the master stability function, Eur. J. Appl. Math., 27, 904-922, 2016 · Zbl 1384.34064 · doi:10.1017/S0956792516000115
[33] Tang, L.; Wu, X.; Lü, J.; Lu, J.-a.; D’Souza, R. M., Master stability functions for complete, intralayer, and interlayer synchronization in multiplex networks of coupled Rössler oscillators, Phys. Rev. E, 99, 012304, 2019 · doi:10.1103/PhysRevE.99.012304
[34] Gambuzza, L. V.; Patti, F. D.; Gallo, L.; Lepri, S.; Romance, M.; Criado, R.
[35] Huang, L.; Chen, Q.; Lai, Y. C.; Pecora, L. M., Generic behavior of master-stability functions in coupled nonlinear dynamical systems, Phys. Rev. E, 80, 036204, 2009 · doi:10.1103/PhysRevE.80.036204
[36] Hindmarsh, J. L.; Rose, R. M., A model of neuronal bursting using three coupled first order differential equations, Proc. R. Soc. London, Ser. B, 221, 1222, 87-102, 1984 · doi:10.1098/rspb.1984.0024
[37] Morris, C.; Lecar, H., Voltage oscillations in the barnacle giant muscle fiber, Biophys. J., 35, 1, 193-213, 1981 · doi:10.1016/S0006-3495(81)84782-0
[38] Izhikevich, E. M., Simple model of spiking neurons, IEEE Trans. Neural Netw., 14, 1569-1572, 2003 · doi:10.1109/TNN.2003.820440
[39] Nobukawa, S.; Nishimura, H.; Yamanishi, T., Routes to chaos induced by a discontinuous resetting process in a hybrid spiking neuron model, Sci. Rep., 8, 379, 2018 · doi:10.1038/s41598-017-18783-z
[40] Górski, T.; Depannemaecker, D.; Destexhe, A., Conductance-based adaptive exponential integrate-and-fire model, Neural Comput., 33, 1, 41-66, 2021 · Zbl 1469.92031 · doi:10.1162/neco_a_01342
[41] Lv, M.; Ma, J., Multiple modes of electrical activities in a new neuron model under electromagnetic radiation, Neurocomputing, 205, 375-381, 2016 · doi:10.1016/j.neucom.2016.05.004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.