×

The implications of deep cooperation strategy for the evolution of cooperation in social dilemmas. (English) Zbl 07834010

Summary: In contemporary society, cooperation is a crucial element for individuals pursuing shared interests and attaining triumph. However, conventional cooperative evolution approaches frequently disregard the intricacies amongst individuals. In order to gain improved comprehension and refine the cooperative evolution process, we suggest a pioneering deep cooperation strategy. The strategy of deep cooperation is grounded on the conventional Prisoner’s dilemma model. It highlights that individuals incur additional costs in the game to attain more benefits while also maximizing mutual social advantages. By doing so, individuals and the collective attain a win-win situation. After research, we find that the system has the following five evolutionary results: only deep cooperation strategy, pure defection strategy, deep cooperation strategy and cooperation strategy coexistence, deep cooperation strategy and defection strategy retained, and three strategies exist simultaneously. The simulation validates that the expensive deep cooperation strategy can enhance the system’s resilience to defection, prompt cooperation strategy in the populace to transition their approach to garner a greater payoff, and foster a favorable atmosphere for cooperation strategy. It provides a new perspective for understanding cooperation.

MSC:

91A22 Evolutionary games
91D30 Social networks; opinion dynamics
Full Text: DOI

References:

[1] Apicella, C. L.; Silk, J. B., The evolution of human cooperation, Curr. Biol., 29, 11, R447-R450, (2019)
[2] Hardin, G., The tragedy of the commons: the population problem has no technical solution; it requires a fundamental extension in morality, Science, 162, 3859, 1243-1248, (1968)
[3] Dawes, R. M., Social dilemmas, Annu. Rev. Psychol., 31, 1, 169-193, (1980)
[4] Rand, D. G.; Nowak, M. A., Human cooperation, Trends Cogn. Sci., 17, 8, 413-425, (2013)
[5] Evans, G. W.; Crumbaugh, C. M., Effects of prisoner’s dilemma format on cooperative behavior, J. Pers. Soc. Psychol., 3, 4, 486, (1966)
[6] Rapoport, A.; Dale, P., Models for prisoner’s dilemma, J. Math. Psychol., 3, 2, 269-286, (1966)
[7] Fehr, E.; Gächter, S., The puzzle of human cooperation, Nature, 421, 6926, 912, (2003)
[8] Liu, S.; Zhang, C.; Li, K.; Zhang, J., Exploring the inducement for social dilemma and cooperation promotion mechanisms in structured populations, Chaos Solitons Fractals, 157, Article 111973 pp., (2022)
[9] Nowak, M. A., Five rules for the evolution of cooperation, Science, 314, 5805, 1560-1563, (2006)
[10] Taylor, C.; Nowak, M. A., Transforming the dilemma, Evolution, 61, 10, 2281-2292, (2007)
[11] Kreps, D. M.; Milgrom, P.; Roberts, J.; Wilson, R., Rational cooperation in the finitely repeated prisoners’ dilemma, J. Econ. Theory, 27, 2, 245-252, (1982) · Zbl 0485.90092
[12] Cooper, R.; DeJong, D. V.; Forsythe, R.; Ross, T. W., Cooperation without reputation: experimental evidence from prisoner’s dilemma games, Games Econ. Behav., 12, 2, 187-218, (1996) · Zbl 0848.90148
[13] Lu, P.; Wang, F., Heterogeneity of inferring reputation probability in cooperative behaviors for the spatial prisoners’ dilemma game, Physica A, Stat. Mech. Appl., 433, 367-378, (2015)
[14] Lin, Y.-T.; Yang, H.-X.; Wu, Z.-X.; Wang, B.-H., Promotion of cooperation by aspiration-induced migration, Physica A, Stat. Mech. Appl., 390, 1, 77-82, (2011)
[15] Yang, H.-X.; Rong, Z.; Lu, P.-M.; Zeng, Y.-Z., Effects of aspiration on public cooperation in structured populations, Physica A, Stat. Mech. Appl., 391, 15, 4043-4049, (2012)
[16] Chen, Y.-S.; Yang, H.-X.; Guo, W.-Z., Aspiration-induced dormancy promotes cooperation in the spatial prisoner’s dilemma games, Physica A, Stat. Mech. Appl., 469, 625-630, (2017) · Zbl 1400.91060
[17] Szolnoki, A.; Xie, N.-G.; Wang, C.; Perc, M., Imitating emotions instead of strategies in spatial games elevates social welfare, Europhys. Lett., 96, 3, Article 38002 pp., (2011)
[18] Szolnoki, A.; Xie, N.-G.; Ye, Y.; Perc, M., Evolution of emotions on networks leads to the evolution of cooperation in social dilemmas, Phys. Rev. E, 87, 4, Article 042805 pp., (2013)
[19] Fu, X.; Liu, X.; Hu, Y.; Huang, S., Emotion-based renewal strategies to promote cooperation in spatial prisoner’s dilemma games, Appl. Math. Comput., 455, Article 128130 pp., (2023) · Zbl 07704199
[20] Wu, Y.; Chang, S.; Zhang, Z.; Deng, Z., Impact of social reward on the evolution of the cooperation behavior in complex networks, Sci. Rep., 7, 1, Article 41076 pp., (2017)
[21] Li, Y.; Chen, S.; Niu, B., Reward depending on public funds stimulates cooperation in spatial prisoner’s dilemma games, Chaos Solitons Fractals, 114, 38-45, (2018) · Zbl 1415.91043
[22] Yang, H.-X.; Rong, Z., Mutual punishment promotes cooperation in the spatial public goods game, Chaos Solitons Fractals, 77, 230-234, (2015) · Zbl 1353.91017
[23] Szabó, G.; Fath, G., Evolutionary games on graphs, Phys. Rep., 446, 4-6, 97-216, (2007)
[24] Masuda, N.; Aihara, K., Spatial prisoner’s dilemma optimally played in small-world networks, Phys. Lett. A, 313, 1-2, 55-61, (2003) · Zbl 1098.91566
[25] Santos, F. C.; Pacheco, J. M., Scale-free networks provide a unifying framework for the emergence of cooperation, Phys. Rev. Lett., 95, 9, Article 098104 pp., (2005)
[26] Ohtsuki, H.; Hauert, C.; Lieberman, E.; Nowak, M. A., A simple rule for the evolution of cooperation on graphs and social networks, Nature, 441, 7092, 502-505, (2006)
[27] Wang, Z.; Szolnoki, A.; Perc, M., Interdependent network reciprocity in evolutionary games, Sci. Rep., 3, 1, 1183, (2013)
[28] Wang, Z.; Wang, L.; Szolnoki, A.; Perc, M., Evolutionary games on multilayer networks: a colloquium, Eur. Phys. J. B, 88, 1-15, (2015)
[29] Wang, Z.-R.; Deng, Z.-H.; Wang, H.-B.; Li, H. L.; Fei-Wang, X., Uneven resources network promotes cooperation in the prisoner’s dilemma game, Appl. Math. Comput., 413, Article 126619 pp., (2022) · Zbl 1510.91040
[30] Pinheiro, F. L.; Santos, F. C.; Pacheco, J. M., Linking individual and collective behavior in adaptive social networks, Phys. Rev. Lett., 116, 12, Article 128702 pp., (2016)
[31] Lu, S.; Zhu, G.; Dai, J., Promoting effect of adaptive interaction based on random neighbors to cooperation in the spatial prisoner’s dilemma game, Appl. Math. Comput., 450, Article 127960 pp., (2023) · Zbl 07701060
[32] Sekiguchi, T., Abundance of strategies for trimatrix games in finite populations, Appl. Math. Comput., 448, Article 127942 pp., (2023) · Zbl 1511.91024
[33] Szolnoki, A.; Szabó, G.; Perc, M., Phase diagrams for the spatial public goods game with pool punishment, Phys. Rev. E, 83, 3, Article 036101 pp., (2011)
[34] You, T.; Zhang, H.; Zhang, Y.; Li, Q.; Zhang, P.; Yang, M., The influence of experienced guider on cooperative behavior in the prisoner’s dilemma game, Appl. Math. Comput., 426, Article 127093 pp., (2022) · Zbl 1510.91044
[35] Xie, K.; Liu, X.; Chen, H.; Yang, J., Preferential selection and expected payoff drive cooperation in spatial voluntary public goods game, Physica A, Stat. Mech. Appl., 605, Article 127984 pp., (2022) · Zbl 1534.91034
[36] He, Z.; Geng, Y.; Shen, C.; Shi, L., Evolution of cooperation in the spatial prisoner’s dilemma game with extortion strategy under win-stay-lose-move rule, Chaos Solitons Fractals, 141, Article 110421 pp., (2020) · Zbl 1496.91017
[37] Xie, K.; Liu, X.; Wang, H.; Jiang, Y., Multi-heterogeneity public goods evolutionary game on lattice, Chaos Solitons Fractals, 172, Article 113562 pp., (2023)
[38] Iwamura, Y.; Nagashima, K.; Tanimoto, J., Evolutionary dynamics of a 3-strategy game: cooperator, defector and costly cooperative loner strategic types, Appl. Math. Comput., 370, Article 124889 pp., (2020) · Zbl 1433.91023
[39] Gao, L.; Pan, Q.; He, M., Advanced defensive cooperators promote cooperation in the prisoner’s dilemma game, Chaos Solitons Fractals, 155, Article 111663 pp., (2022) · Zbl 1498.91050
[40] Huang, S.; Liu, X.; Hu, Y.; Fu, X., The influence of aggressive behavior on cooperation evolution in social dilemma, Physica A, Stat. Mech. Appl., 630, Article 129283 pp., (2023)
[41] Domingos, E. F.; Santos, F. C.; Lenaerts, T., Egttools: evolutionary game dynamics in python, iScience, 26, 4, (2023)
[42] Hauert, C.; De Monte, S.; Hofbauer, J.; Sigmund, K., Volunteering as red queen mechanism for cooperation in public goods games, Science, 296, 5570, 1129-1132, (2002)
[43] Shen, C.; Chu, C.; Geng, Y.; Jin, J.; Chen, F.; Shi, L., Cooperation enhanced by the coevolution of teaching activity in evolutionary prisoner’s dilemma games with voluntary participation, PLoS ONE, 13, 2, Article e0193151 pp., (2018)
[44] Traulsen, A.; Nowak, M. A.; Pacheco, J. M., Stochastic dynamics of invasion and fixation, Phys. Rev. E, 74, 1, Article 011909 pp., (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.