×

On the rate of convergence of the nonlinear Galerkin methods. (English) Zbl 0783.65053

Authors’ summary: We provide estimates to the rate of convergence of the nonlinear Galerkin approximation method. In particular, and by means of an illustrative example, we show that the nonlinear Galerkin method converges faster than the usual Galerkin method.

MSC:

65J15 Numerical solutions to equations with nonlinear operators
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
34G20 Nonlinear differential equations in abstract spaces
35Q30 Navier-Stokes equations
76D05 Navier-Stokes equations for incompressible viscous fluids
Full Text: DOI

References:

[1] A. M. Bloch and E. S. Titi, On the dynamics of rotating elastic beams, New trends in systems theory (Genoa, 1990) Progr. Systems Control Theory, vol. 7, Birkhäuser Boston, Boston, MA, 1991, pp. 128 – 135. · Zbl 0759.73036 · doi:10.1007/978-1-4612-0439-8_15
[2] H. Brézis and T. Gallouet, Nonlinear Schrödinger evolution equations, Nonlinear Anal. 4 (1980), no. 4, 677 – 681. · Zbl 0451.35023 · doi:10.1016/0362-546X(80)90068-1
[3] H. S. Brown, M. S. Jolly, I. G. Kevrekidis, and E. S. Titi, Use of approximate inertial manifolds in bifurcation calculations, Continuation and bifurcations: numerical techniques and applications (Leuven, 1989) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 313, Kluwer Acad. Publ., Dordrecht, 1990, pp. 9 – 23. · Zbl 0739.35005
[4] Min Chen and Roger Temam, Incremental unknowns for solving partial differential equations, Numer. Math. 59 (1991), no. 3, 255 – 271. · Zbl 0712.65103 · doi:10.1007/BF01385779
[5] Peter Constantin and Ciprian Foias, Navier-Stokes equations, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1988. · Zbl 0687.35071
[6] P. Constantin, C. Foias, B. Nicolaenko, and R. Temam, Integral manifolds and inertial manifolds for dissipative partial differential equations, Applied Mathematical Sciences, vol. 70, Springer-Verlag, New York, 1989. · Zbl 0683.58002
[7] A. Debussche and M. Marion, On the construction of families of approximate inertial manifolds, J. Differential Equations 100 (1992), no. 1, 173 – 201. · Zbl 0760.34050 · doi:10.1016/0022-0396(92)90131-6
[8] Christophe Devulder and Martine Marion, A class of numerical algorithms for large time integration: the nonlinear Galerkin methods, SIAM J. Numer. Anal. 29 (1992), no. 2, 462 – 483. · Zbl 0754.65080 · doi:10.1137/0729028
[9] Thierry Dubois, François Jauberteau, and Roger Temam, The nonlinear Galerkin method for the two- and three-dimensional Navier-Stokes equations, Twelfth International Conference on Numerical Methods in Fluid Dynamics (Oxford, 1990) Lecture Notes in Phys., vol. 371, Springer, Berlin, 1990, pp. 116 – 120. · doi:10.1007/3-540-53619-1_142
[10] T. Dubois, F. Jauberteau, M. Marion, and R. Temam, Subgrid modelling and the interaction of small and large wavelengths in turbulent flows, Comput. Phys. Comm. 65 (1991), no. 1-3, 100 – 106. · Zbl 0900.76082 · doi:10.1016/0010-4655(91)90160-M
[11] C. Foiaş, Statistical study of Navier-Stokes equations. I, II, Rend. Sem. Mat. Univ. Padova 48 (1972), 219 – 348 (1973); ibid. 49 (1973), 9 – 123. · Zbl 0283.76017
[12] C. Foias, M. S. Jolly, I. G. Kevrekidis, G. R. Sell, and E. S. Titi, On the computation of inertial manifolds, Phys. Lett. A 131 (1988), no. 7-8, 433 – 436. · doi:10.1016/0375-9601(88)90295-2
[13] Ciprian Foias, Oscar Manley, and Roger Temam, Sur l’interaction des petits et grands tourbillons dans des écoulements turbulents, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), no. 11, 497 – 500 (French, with English summary). · Zbl 0624.76072
[14] -, Modelization of the interaction of small and large eddies in two dimensional turbulent flows, Math. Mod. Numer. Anal. 22 (1988), 93-114.
[15] C. Foias, B. Nicolaenko, G. R. Sell, and R. Temam, Inertial manifolds for the Kuramoto-Sivashinsky equation and an estimate of their lowest dimension, J. Math. Pures Appl. (9) 67 (1988), no. 3, 197 – 226. · Zbl 0694.35028
[16] C. Foias and J.-C. Saut, Remarques sur les équations de Navier-Stokes stationnaires, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 10 (1983), no. 1, 169 – 177 (French). · Zbl 0546.35058
[17] Ciprian Foias, George R. Sell, and Roger Temam, Inertial manifolds for nonlinear evolutionary equations, J. Differential Equations 73 (1988), no. 2, 309 – 353. · Zbl 0643.58004 · doi:10.1016/0022-0396(88)90110-6
[18] Ciprian Foias, George R. Sell, and Edriss S. Titi, Exponential tracking and approximation of inertial manifolds for dissipative nonlinear equations, J. Dynam. Differential Equations 1 (1989), no. 2, 199 – 244. · Zbl 0692.35053 · doi:10.1007/BF01047831
[19] C. Foiaş and R. Temam, Remarques sur les équations de Navier-Stokes stationnaires et les phénomènes successifs de bifurcation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 5 (1978), no. 1, 28 – 63 (French). · Zbl 0384.35047
[20] C. Foiaş and R. Temam, Some analytic and geometric properties of the solutions of the evolution Navier-Stokes equations, J. Math. Pures Appl. (9) 58 (1979), no. 3, 339 – 368. · Zbl 0454.35073
[21] C. Foias and R. Temam, The algebraic approximation of attractors: the finite-dimensional case, Phys. D 32 (1988), no. 2, 163 – 182. · Zbl 0671.58024 · doi:10.1016/0167-2789(88)90049-8
[22] C. Foias and R. Temam, Gevrey class regularity for the solutions of the Navier-Stokes equations, J. Funct. Anal. 87 (1989), no. 2, 359 – 369. · Zbl 0702.35203 · doi:10.1016/0022-1236(89)90015-3
[23] Ciprian Foias and Edriss S. Titi, Determining nodes, finite difference schemes and inertial manifolds, Nonlinearity 4 (1991), no. 1, 135 – 153. · Zbl 0714.34078
[24] C. Foias, M. S. Jolly, I. G. Kevrekidis, and E. S. Titi, Dissipativity of numerical schemes, Nonlinearity 4 (1991), no. 3, 591 – 613. · Zbl 0734.65080
[25] M. D. Graham, P. H. Steen, and E. S. Titi, Computational efficiency and approximate inertial manifolds for a Bénard convection system, J. Nonlinear Sci. 3 (1993), no. 2, 153 – 167. · Zbl 0803.65122 · doi:10.1007/BF02429862
[26] W. D. Henshaw, H.-O. Kreiss, and L. G. Reyna, Smallest scale estimates for the Navier-Stokes equations for incompressible fluids, Arch. Rational Mech. Anal. 112 (1990), no. 1, 21 – 44. · Zbl 0704.76013 · doi:10.1007/BF00431721
[27] John G. Heywood, The Navier-Stokes equations: on the existence, regularity and decay of solutions, Indiana Univ. Math. J. 29 (1980), no. 5, 639 – 681. · Zbl 0494.35077 · doi:10.1512/iumj.1980.29.29048
[28] John G. Heywood, An error estimate uniform in time for spectral Galerkin approximations of the Navier-Stokes problem, Pacific J. Math. 98 (1982), no. 2, 333 – 345. · Zbl 0483.76041
[29] John G. Heywood and Rolf Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem. II. Stability of solutions and error estimates uniform in time, SIAM J. Numer. Anal. 23 (1986), no. 4, 750 – 777. · Zbl 0611.76036 · doi:10.1137/0723049
[30] E. Hopf, On linear partial differential equations, Lectures Series of the Symposium on Partial Differential Equations, Berkeley, University of Kansas, 1957, pp. 1-23.
[31] F. Jauberteau, C. Rosier, and R. Temam, A nonlinear Galerkin method for the Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg. 80 (1990), no. 1-3, 245 – 260. Spectral and high order methods for partial differential equations (Como, 1989). · Zbl 0722.76039 · doi:10.1016/0045-7825(90)90028-K
[32] M. S. Jolly, I. G. Kevrekidis, and E. S. Titi, Approximate inertial manifolds for the Kuramoto-Sivashinsky equation: analysis and computations, Phys. D 44 (1990), no. 1-2, 38 – 60. · Zbl 0704.58030 · doi:10.1016/0167-2789(90)90046-R
[33] M. S. Jolly, I. G. Kevrekidis, and E. S. Titi, Preserving dissipation in approximate inertial forms for the Kuramoto-Sivashinsky equation, J. Dynam. Differential Equations 3 (1991), no. 2, 179 – 197. · Zbl 0738.35024 · doi:10.1007/BF01047708
[34] D. A. Jones and E. S. Titi, A remark on the quasi-stationary approximate inertial manifolds for the Navier-Stokes equations, Dept. of Math., UC-Irvine, Preprint no. 920408, (submitted). · Zbl 0808.35102
[35] Minkyu Kwak, Finite-dimensional inertial forms for the 2D Navier-Stokes equations, Indiana Univ. Math. J. 41 (1992), no. 4, 927 – 981. · Zbl 0765.35034 · doi:10.1512/iumj.1992.41.41051
[36] O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Second English edition, revised and enlarged. Translated from the Russian by Richard A. Silverman and John Chu. Mathematics and its Applications, Vol. 2, Gordon and Breach, Science Publishers, New York-London-Paris, 1969. · Zbl 0184.52603
[37] J. L. Lions, Quelques méthodes de résolution de problèmes aux limites nonlineaires, Dunod, Paris, 1969. · Zbl 0189.40603
[38] John Mallet-Paret and George R. Sell, Inertial manifolds for reaction diffusion equations in higher space dimensions, J. Amer. Math. Soc. 1 (1988), no. 4, 805 – 866. · Zbl 0674.35049
[39] Martine Marion, Approximate inertial manifolds for reaction-diffusion equations in high space dimension, J. Dynam. Differential Equations 1 (1989), no. 3, 245 – 267. · Zbl 0702.35127 · doi:10.1007/BF01053928
[40] Martine Marion, Approximate inertial manifolds for the pattern formation Cahn-Hilliard equation, RAIRO Modél. Math. Anal. Numér. 23 (1989), no. 3, 463 – 488. Attractors, inertial manifolds and their approximation (Marseille-Luminy, 1987). · Zbl 0724.65122
[41] Martine Marion and Roger Temam, Nonlinear Galerkin methods, SIAM J. Numer. Anal. 26 (1989), no. 5, 1139 – 1157. · Zbl 0683.65083 · doi:10.1137/0726063
[42] M. Marion and R. Temam, Nonlinear Galerkin methods: the finite elements case, Numer. Math. 57 (1990), no. 3, 205 – 226. · Zbl 0702.65081 · doi:10.1007/BF01386407
[43] G. Métivier, Étude asymptotique des valeurs propres et la fonction spectrale de problèmes aux limites, Thèse, Université de Nice, 1976.
[44] Reimund Rautmann, Eine Fehlerschranke für Galerkinapproximationen lokaler Navier-Stokes-Lösungen, Constructive methods for nonlinear boundary value problems and nonlinear oscillations (Proc. Conf., Math. Res. Inst., Oberwolfach, 1978), Internat. Ser. Numer. Math., vol. 48, Birkhäuser, Basel-Boston, Mass., 1979, pp. 110 – 125 (German). · Zbl 0442.76034
[45] Reimund Rautmann, On the convergence rate of nonstationary Navier-Stokes approximations, Approximation methods for Navier-Stokes problems (Proc. Sympos., Univ. Paderborn, Paderborn, 1979) Lecture Notes in Math., vol. 771, Springer, Berlin, 1980, pp. 425 – 449. · Zbl 0442.76034
[46] Jie Shen, Long time stability and convergence for fully discrete nonlinear Galerkin methods, Appl. Anal. 38 (1990), no. 4, 201 – 229. · Zbl 0684.65095 · doi:10.1080/00036819008839963
[47] Roger Temam, Navier-Stokes equations and nonlinear functional analysis, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 41, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1983. · Zbl 0522.35002
[48] Roger Temam, Navier-Stokes equations, 3rd ed., Studies in Mathematics and its Applications, vol. 2, North-Holland Publishing Co., Amsterdam, 1984. Theory and numerical analysis; With an appendix by F. Thomasset. · Zbl 0568.35002
[49] Roger Temam, Infinite-dimensional dynamical systems in mechanics and physics, Applied Mathematical Sciences, vol. 68, Springer-Verlag, New York, 1988. · Zbl 0662.35001
[50] R. Temam, Attractors for the Navier-Stokes equations: localization and approximation, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36 (1989), no. 3, 629 – 647. · Zbl 0698.58040
[51] R. Temam, Inertial manifolds and multigrid methods, SIAM J. Math. Anal. 21 (1990), no. 1, 154 – 178. · Zbl 0715.35039 · doi:10.1137/0521009
[52] R. Temam, Stability analysis of the nonlinear Galerkin method, Math. Comp. 57 (1991), no. 196, 477 – 505. · Zbl 0734.65079
[53] Edriss Titi, Estimations uniformes pour la résolvante des opérateurs de Navier-Stokes linéarisés, C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), no. 15, 723 – 726 (French, with English summary). · Zbl 0601.35091
[54] Edriss Saleh Titi, On a criterion for locating stable stationary solutions to the Navier-Stokes equations, Nonlinear Anal. 11 (1987), no. 9, 1085 – 1102. · Zbl 0642.76031 · doi:10.1016/0362-546X(87)90086-1
[55] Edriss S. Titi, Une variété approximante de l’attracteur universel des équations de Navier-Stokes, non linéaire, de dimension finie, C. R. Acad. Sci. Paris Sér. I Math. 307 (1988), no. 8, 383 – 385 (French, with English summary). · Zbl 0683.35073
[56] Edriss S. Titi, On approximate inertial manifolds to the Navier-Stokes equations, J. Math. Anal. Appl. 149 (1990), no. 2, 540 – 557. · Zbl 0723.35063 · doi:10.1016/0022-247X(90)90061-J
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.