×

Structured total least squares and \(L_ 2\) approximation problems. (English) Zbl 0781.65028

The author shows that the solution to the structural total least squares problem follows from that of a nonlinear generalized singular value decomposition problem. An iterative scheme to find a (local) minimum is developed. Numerically it is shown that the scheme converges linearly. Application of this scheme to several problems is also discussed.
Reviewer: P.Narain (Bombay)

MSC:

65F20 Numerical solutions to overdetermined systems, pseudoinverses

Software:

VanHuffel
Full Text: DOI

References:

[1] Abatzoglou, T. J.; Mendel, J. M.; Harada, G. A., The constrained total least squares technique and its application to harmonic superresolution, IEEE Trans. Signal Process, SP-39, 5, 1070-1087 (1991) · Zbl 0744.65031
[2] Adcock, R. J., Note on the method of least squares, The Analyst, IV, 6, 183-184 (Nov. 1877) · JFM 09.0154.04
[3] Adcock, R. J., A problem in least squares, The Analyst, V, 2, 53-54 (Mar. 1878)
[4] Cadzow, J., Signal enhancement: A composite property mapping algorithm, IEEE Trans. Acoust. Speech Signal Process, ASSP-36, 49-62 (1988) · Zbl 0649.93059
[5] Cadzow, J. A.; Wilkes, D. M., Enhanced sinusoidal and exponential data modeling, (Vaccaro, R. J., SVD and Signal Processing, II: Algorithms, Analysis and Applications (1991), Elsevier Science), 335-352
[6] Cybenko, G., On the eigenstructure of Toeplitz matrices, IEEE Trans. Acoust. Speech and Signal Process, ASSP-32, 4, 918-921 (1984) · Zbl 0579.15009
[7] Demmel, J., The smallest perturbation of a submatrix which lowers the rank and constrained total least squares problems, SIAM J. Numer. Anal., 24, 1, 199-206 (1987) · Zbl 0651.15024
[8] De Moor, B.; Vandewalle, J., An adaptive singular value decomposition algorithm based on generalized Chebyshev recursion, (Durrani, T. S.; Abbiss, J. B.; Hudson, J. E.; Madan, R. N.; McWhirter, J. G.; Moore, T. A., Proceedings of the Conference on Mathematics in Signal Processing, Univ. of Bath, 17-19 Sept. 1985 (1987), Clarendon: Clarendon Oxford), 607-635 · Zbl 0639.65024
[9] De Moor, B.; Golub, G., The restricted singular value decomposition: Properties and Applications, SIAM J. Matrix Anal. Appl., 12, 401-425 (1991) · Zbl 0738.15006
[10] De Moor, B., The Singular Value Decomposition and Long and Short Spaces of Noisy Matrices, (ESAT-SISTA Report 1990-38 (1990), Dept. of Electrical Engineering, Katholieke Univ. Leuven: Dept. of Electrical Engineering, Katholieke Univ. Leuven Belgium). (ESAT-SISTA Report 1990-38 (1990), Dept. of Electrical Engineering, Katholieke Univ. Leuven: Dept. of Electrical Engineering, Katholieke Univ. Leuven Belgium), IEEE Trans. Signal Process, 32 (1993)
[11] De Moor, B.; Van Overschee, P.; Schelfhout, G., \(H_2\) Model Reduction for SISO Systems, (ESAT-SISTA Internal Report 1992-30 (1993), Dept. of Electrical Engineering, Katholieke Univ. Leuven: Dept. of Electrical Engineering, Katholieke Univ. Leuven Belgium). (ESAT-SISTA Internal Report 1992-30 (1993), Dept. of Electrical Engineering, Katholieke Univ. Leuven: Dept. of Electrical Engineering, Katholieke Univ. Leuven Belgium), also IMA Preprint Ser. 1035 (1992)
[12] Eckart, C.; Young, G., The approximation of one matrix by another of lower rank, Psychometrika, 1, 211-218 (1936) · JFM 62.1075.02
[13] El Ghaoui, L., Fast computation of the largest stability radius for a two-parameter linear system, IEEE Trans. Automat. Control, 37, 7, 1033-1037 (1992) · Zbl 0767.93056
[14] Fisher, G. W., Matrix analysis of metamorphic mineral assemblages and reactions, Contrib. Mineral. and Petrol., 102, 69-77 (1989)
[15] Gabriel, K. R.; Zamir, S., Lower rank approximation of matrices by least squares with any choice of weights, Technometrics, 21, No. 4 (1979) · Zbl 0471.62004
[16] Golub, G.; Hoffman, A.; Stewart, G., A generalization of the Eckart-Young-Mirsky approximation theorem, Linear Algebra Appl., 88/89, 317-327 (1987) · Zbl 0623.15020
[17] Golub, G. H.; Van Loan, C., Matrix Computations (1989), Johns Hopkins U.P: Johns Hopkins U.P Baltimore · Zbl 0733.65016
[18] Golub, G. H.; Van Loan, C. F., An analysis of the total least squares problem, SIAM J. Numer. Anal., 17, No. 6 (1980) · Zbl 0468.65011
[19] Hanzon, B., The area enclosed by the (oriented) Nyquist diagram and the Hilbert-Schmidt-Hankel norm of a linear system, IEEE Trans. Automat. Control, 37, 6, 835-839 (1992) · Zbl 0760.93054
[20] Householder, A. S.; Young, G., Matrix approximation and latent roots, Amer. Math. Monthly, 45, 165-171 (1938) · Zbl 0019.14701
[21] Kung, S. Y., A new identification and model reduction algorithm via singular value decomposition, Proceedings of the 12th Asilomar Conference on Circuits, Systems and Computers, 705-714 (1978), Pacific Grove, Calif.
[22] Moonen, M.; De Moor, B.; Vandenberghe, L.; Vandewalle, J., On- and off-line identification of linear state space models, Internat. J. Control, 49, 1, 219-239 (1990) · Zbl 0661.93072
[23] K. Pearson, On lines and planes of closest fit to systems of points in space, Philos. Mag 6th ser.; K. Pearson, On lines and planes of closest fit to systems of points in space, Philos. Mag 6th ser. · JFM 32.0246.07
[24] VanHuffel, S.; Vandewalle, J., The Total Least Squares Problem: Computational Aspects and Analysis, (Frontiers Appl. Math. 9 (1991), SIAM: SIAM Philadelphia), 300 · Zbl 0789.62054
[25] Van Overschee, P.; De Moor, B., N4SID: Subspace Algorithms for the Identification of Combined Deterministic-Stochastic Systems, (ESAT-SISTA Report 1992-34 (1992), Dept. of Electrical Engineering, Katholieke Univ. Leuven: Dept. of Electrical Engineering, Katholieke Univ. Leuven Belgium), Automatica, special issue on Statistical Signal Processing and Control, to appear. · Zbl 0787.93097
[26] Watson, G. A., On a class of algorithms for total approximation, J. Approx. Theory, 45, 3, 219-231 (1985) · Zbl 0582.65006
[27] Young, G., Matrix approximation and subspace fitting, Psychometrika, 2, 1, 21-25 (1937) · JFM 63.1111.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.