×

A homotopy theorem on oriented matroids. (English) Zbl 0781.52008

Summary: Consider a finite family of hyperplanes \({\mathcal H}=\{H_ 1,\ldots,H_ n\}\) in the finite-dimensional vector space \(\mathbb{R}^ d\). We call chambers (determined by \({\mathcal H})\) the connected components of \(\mathbb{R}^ d\backslash\bigcup^ n_{i=1}H_ i\). Galleries are finite families of chambers \((C_ 0,C_ 1,\ldots,C_ m)\), where exactly one hyperplane separates \(C_{i+1}\) from \(C_ i\), for \(0\leq i\leq m\), and exactly \(m\) hyperplanes separate \(C_ 0\) from \(C_ m\). Using oriented matroid theory, we prove that any two galleries with the same extremities can be derived from each other by a finite number of deformations of the same kind (elementary deformations). When the chambers are simplicial cones, this is a result of P. Deligne [Invent. Math. 17, 273-302 (1972; Zbl 0238.20034)]. Our theorem generalizes also a result of M. Salvetti [Invent. Math. 88, 603-618 (1987; Zbl 0594.57009)].

MSC:

52B40 Matroids in convex geometry (realizations in the context of convex polytopes, convexity in combinatorial structures, etc.)
05B35 Combinatorial aspects of matroids and geometric lattices
Full Text: DOI

References:

[1] A. Björner, M. Las Vergnas, B. Sturmfels, N. White and G.M. Ziegler, Oriented Matroids, Cambridge University Press, to appear.; A. Björner, M. Las Vergnas, B. Sturmfels, N. White and G.M. Ziegler, Oriented Matroids, Cambridge University Press, to appear. · Zbl 0773.52001
[2] Bland, R. G.; Las Vergnas, M., Orientability of matroids, J. Combin. Theory Ser. B, 24, 94-123 (1978) · Zbl 0374.05016
[3] Cordovil, R., Sur les matroïdes orientés de rang trois et les arrangements de pseudodroites dans le plan projectif réel, European J. Combin., 3, 307-318 (1982) · Zbl 0501.05021
[4] Cordovil, R., A combinatorial perspective of the non-Radon partitions, J. Combin. Theory Ser. A, 38, 38-47 (1985) · Zbl 0571.05014
[5] Cordovil, R.; Bienia, W., An axiomatic of the non-Radon partitions, European J. Combin., 8, 1-4 (1987) · Zbl 0633.05016
[6] R. Cordovil and K. Fukuda, Oriented matroids and combinatorial manifolds, European J. Combin., to appear.; R. Cordovil and K. Fukuda, Oriented matroids and combinatorial manifolds, European J. Combin., to appear. · Zbl 0779.52014
[7] Deligne, P., Les immeubles des groupes de tresses généralisés, Invent. Math., 17, 273-302 (1972) · Zbl 0238.20034
[8] Edelman, P., A partial order on the regions of \(R_n\) disserted by hyperplans, Trans. Amer. Math. Soc., 283, 617-631 (1984) · Zbl 0555.06003
[9] Folkman, J.; Lawrence, J., Oriented matroids, J. Combin Theory Ser. B., 25, 199-236 (1978) · Zbl 0325.05019
[10] Handa, K., Characterization of oriented matroids in terms of topes, European J. Combin, 11, 41-45 (1990) · Zbl 0748.05042
[11] Las Vergnas, M., Convexity in oriented matroids, J. Combin. Theory Ser. B, 29, 231-243 (1980) · Zbl 0443.05026
[12] Lawrence, J., Lopsided sets and orthant-intersection by convex sets, Pacific J. Math., 104, 155-173 (1983) · Zbl 0471.52003
[13] Lawrence, J., Introduction to arrangements, (CBMS Lecture Notes, Vol. 72 (1989), Amer. Math. Soc: Amer. Math. Soc Providence, RI) · Zbl 0722.51003
[14] Salvetti, M., Topology of the complement of real hyperplanes in \(C_n\), Invent. Math., 88, 603-618 (1987) · Zbl 0594.57009
[15] Zeigler, G. M., Algebraic combinatorics of hyperplane arrangements, (Ph.D. Dissertation (1987), M.I.T)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.