×

Tensor operators. III: Some fundamental tensor operator identities. (English) Zbl 0781.17003

[Part I, cf. Commun. Algebra 18, 4047-4086 (1990; Zbl 0732.22019); Part II, cf. ibid. 20, 2903-2917 (1992; Zbl 0780.22008).]
The authors continue their investigation of tensor operators transforming under finite dimensional representations of semisimple Lie groups. Let \(E\) be an \(n\)-dimensional vector space over the complex field \(\mathbb{C}\). The \(\mathbb{C}\)-algebra constructed in a basis free way from \(E\) is called the “shape algebra” \(\Lambda^ +E\). It is the direct sum of precisely one copy of each finite dimensional irreducible polynomial representation \(\Lambda^ \alpha E\) of the general linear group \(\text{GL}(E)\), where \(\alpha=(m_ 1,\dots,m_ s)\), \(m_ 1\geq m_ 2\geq\dots \geq m_ s\geq 1\). The authors use the method of undetermined coefficients to investigate natural transformations \(B: \Lambda^ \alpha\to \Lambda^{m_ 1}\otimes \dots\otimes \Lambda^{m_ s}\) and \(B_ t: \Lambda^ \alpha\to \Lambda^{(m_ 1,\dots, \widehat{m}_ t,\dots, m_ s)} \otimes \Lambda^{m_ t}\), where \(1\leq t\leq s\). Necessary and sufficient conditions were found on the coefficients defining \(B\) and sufficient conditions on the coefficients defining \(B_ t\). The authors also give explicit formulas for the transformations \(B_ 1\) and \(B_ s\).
Reviewer: A.Klimyk (Kiev)

MSC:

17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
81R05 Finite-dimensional groups and algebras motivated by physics and their representations
22E46 Semisimple Lie groups and their representations
Full Text: DOI

References:

[1] DOI: 10.1007/BF01239527 · Zbl 0725.57007 · doi:10.1007/BF01239527
[2] Turaev V. G., J. Differential Geometry 36 pp 35– (1992)
[3] DOI: 10.1016/0040-9383(92)90015-A · Zbl 0779.57009 · doi:10.1016/0040-9383(92)90015-A
[4] DOI: 10.1016/0031-9163(63)90106-9 · doi:10.1016/0031-9163(63)90106-9
[5] DOI: 10.1080/00927879008824122 · Zbl 0732.22019 · doi:10.1080/00927879008824122
[6] DOI: 10.1080/00927879208824496 · Zbl 0780.22008 · doi:10.1080/00927879208824496
[7] DOI: 10.1016/0021-8693(77)90211-3 · Zbl 0358.15033 · doi:10.1016/0021-8693(77)90211-3
[8] DOI: 10.1016/0021-8693(79)90149-2 · Zbl 0441.14013 · doi:10.1016/0021-8693(79)90149-2
[9] DOI: 10.1016/0021-8693(85)90185-1 · Zbl 0616.14038 · doi:10.1016/0021-8693(85)90185-1
[10] DOI: 10.2307/2374275 · Zbl 0576.22018 · doi:10.2307/2374275
[11] DOI: 10.1016/0021-8693(79)90289-8 · Zbl 0437.14030 · doi:10.1016/0021-8693(79)90289-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.